12,656 research outputs found

    Deeply Learning the Messages in Message Passing Inference

    Full text link
    Deep structured output learning shows great promise in tasks like semantic image segmentation. We proffer a new, efficient deep structured model learning scheme, in which we show how deep Convolutional Neural Networks (CNNs) can be used to estimate the messages in message passing inference for structured prediction with Conditional Random Fields (CRFs). With such CNN message estimators, we obviate the need to learn or evaluate potential functions for message calculation. This confers significant efficiency for learning, since otherwise when performing structured learning for a CRF with CNN potentials it is necessary to undertake expensive inference for every stochastic gradient iteration. The network output dimension for message estimation is the same as the number of classes, in contrast to the network output for general CNN potential functions in CRFs, which is exponential in the order of the potentials. Hence CNN message learning has fewer network parameters and is more scalable for cases that a large number of classes are involved. We apply our method to semantic image segmentation on the PASCAL VOC 2012 dataset. We achieve an intersection-over-union score of 73.4 on its test set, which is the best reported result for methods using the VOC training images alone. This impressive performance demonstrates the effectiveness and usefulness of our CNN message learning method.Comment: 11 pages. Appearing in Proc. The Twenty-ninth Annual Conference on Neural Information Processing Systems (NIPS), 2015, Montreal, Canad

    Consensus Message Passing for Layered Graphical Models

    Full text link
    Generative models provide a powerful framework for probabilistic reasoning. However, in many domains their use has been hampered by the practical difficulties of inference. This is particularly the case in computer vision, where models of the imaging process tend to be large, loopy and layered. For this reason bottom-up conditional models have traditionally dominated in such domains. We find that widely-used, general-purpose message passing inference algorithms such as Expectation Propagation (EP) and Variational Message Passing (VMP) fail on the simplest of vision models. With these models in mind, we introduce a modification to message passing that learns to exploit their layered structure by passing 'consensus' messages that guide inference towards good solutions. Experiments on a variety of problems show that the proposed technique leads to significantly more accurate inference results, not only when compared to standard EP and VMP, but also when compared to competitive bottom-up conditional models.Comment: Appearing in Proceedings of the 18th International Conference on Artificial Intelligence and Statistics (AISTATS) 201

    Block Belief Propagation for Parameter Learning in Markov Random Fields

    Full text link
    Traditional learning methods for training Markov random fields require doing inference over all variables to compute the likelihood gradient. The iteration complexity for those methods therefore scales with the size of the graphical models. In this paper, we propose \emph{block belief propagation learning} (BBPL), which uses block-coordinate updates of approximate marginals to compute approximate gradients, removing the need to compute inference on the entire graphical model. Thus, the iteration complexity of BBPL does not scale with the size of the graphs. We prove that the method converges to the same solution as that obtained by using full inference per iteration, despite these approximations, and we empirically demonstrate its scalability improvements over standard training methods.Comment: Accepted to AAAI 201
    • …
    corecore