17,401 research outputs found

    Towards Autonomous Selective Harvesting: A Review of Robot Perception, Robot Design, Motion Planning and Control

    Full text link
    This paper provides an overview of the current state-of-the-art in selective harvesting robots (SHRs) and their potential for addressing the challenges of global food production. SHRs have the potential to increase productivity, reduce labour costs, and minimise food waste by selectively harvesting only ripe fruits and vegetables. The paper discusses the main components of SHRs, including perception, grasping, cutting, motion planning, and control. It also highlights the challenges in developing SHR technologies, particularly in the areas of robot design, motion planning and control. The paper also discusses the potential benefits of integrating AI and soft robots and data-driven methods to enhance the performance and robustness of SHR systems. Finally, the paper identifies several open research questions in the field and highlights the need for further research and development efforts to advance SHR technologies to meet the challenges of global food production. Overall, this paper provides a starting point for researchers and practitioners interested in developing SHRs and highlights the need for more research in this field.Comment: Preprint: to be appeared in Journal of Field Robotic

    Towards Advantages of Parameterized Quantum Pulses

    Full text link
    The advantages of quantum pulses over quantum gates have attracted increasing attention from researchers. Quantum pulses offer benefits such as flexibility, high fidelity, scalability, and real-time tuning. However, while there are established workflows and processes to evaluate the performance of quantum gates, there has been limited research on profiling parameterized pulses and providing guidance for pulse circuit design. To address this gap, our study proposes a set of design spaces for parameterized pulses, evaluating these pulses based on metrics such as expressivity, entanglement capability, and effective parameter dimension. Using these design spaces, we demonstrate the advantages of parameterized pulses over gate circuits in the aspect of duration and performance at the same time thus enabling high-performance quantum computing. Our proposed design space for parameterized pulse circuits has shown promising results in quantum chemistry benchmarks.Comment: 11 Figures, 4 Table

    Fast Charging of Lithium-Ion Batteries Using Deep Bayesian Optimization with Recurrent Neural Network

    Full text link
    Fast charging has attracted increasing attention from the battery community for electrical vehicles (EVs) to alleviate range anxiety and reduce charging time for EVs. However, inappropriate charging strategies would cause severe degradation of batteries or even hazardous accidents. To optimize fast-charging strategies under various constraints, particularly safety limits, we propose a novel deep Bayesian optimization (BO) approach that utilizes Bayesian recurrent neural network (BRNN) as the surrogate model, given its capability in handling sequential data. In addition, a combined acquisition function of expected improvement (EI) and upper confidence bound (UCB) is developed to better balance the exploitation and exploration. The effectiveness of the proposed approach is demonstrated on the PETLION, a porous electrode theory-based battery simulator. Our method is also compared with the state-of-the-art BO methods that use Gaussian process (GP) and non-recurrent network as surrogate models. The results verify the superior performance of the proposed fast charging approaches, which mainly results from that: (i) the BRNN-based surrogate model provides a more precise prediction of battery lifetime than that based on GP or non-recurrent network; and (ii) the combined acquisition function outperforms traditional EI or UCB criteria in exploring the optimal charging protocol that maintains the longest battery lifetime

    Learning Over All Contracting and Lipschitz Closed-Loops for Partially-Observed Nonlinear Systems

    Full text link
    This paper presents a policy parameterization for learning-based control on nonlinear, partially-observed dynamical systems. The parameterization is based on a nonlinear version of the Youla parameterization and the recently proposed Recurrent Equilibrium Network (REN) class of models. We prove that the resulting Youla-REN parameterization automatically satisfies stability (contraction) and user-tunable robustness (Lipschitz) conditions on the closed-loop system. This means it can be used for safe learning-based control with no additional constraints or projections required to enforce stability or robustness. We test the new policy class in simulation on two reinforcement learning tasks: 1) magnetic suspension, and 2) inverting a rotary-arm pendulum. We find that the Youla-REN performs similarly to existing learning-based and optimal control methods while also ensuring stability and exhibiting improved robustness to adversarial disturbances

    Accurate and Interpretable Solution of the Inverse Rig for Realistic Blendshape Models with Quadratic Corrective Terms

    Full text link
    We propose a new model-based algorithm solving the inverse rig problem in facial animation retargeting, exhibiting higher accuracy of the fit and sparser, more interpretable weight vector compared to SOTA. The proposed method targets a specific subdomain of human face animation - highly-realistic blendshape models used in the production of movies and video games. In this paper, we formulate an optimization problem that takes into account all the requirements of targeted models. Our objective goes beyond a linear blendshape model and employs the quadratic corrective terms necessary for correctly fitting fine details of the mesh. We show that the solution to the proposed problem yields highly accurate mesh reconstruction even when general-purpose solvers, like SQP, are used. The results obtained using SQP are highly accurate in the mesh space but do not exhibit favorable qualities in terms of weight sparsity and smoothness, and for this reason, we further propose a novel algorithm relying on a MM technique. The algorithm is specifically suited for solving the proposed objective, yielding a high-accuracy mesh fit while respecting the constraints and producing a sparse and smooth set of weights easy to manipulate and interpret by artists. Our algorithm is benchmarked with SOTA approaches, and shows an overall superiority of the results, yielding a smooth animation reconstruction with a relative improvement up to 45 percent in root mean squared mesh error while keeping the cardinality comparable with benchmark methods. This paper gives a comprehensive set of evaluation metrics that cover different aspects of the solution, including mesh accuracy, sparsity of the weights, and smoothness of the animation curves, as well as the appearance of the produced animation, which human experts evaluated

    Safe Zeroth-Order Optimization Using Quadratic Local Approximations

    Full text link
    This paper addresses black-box smooth optimization problems, where the objective and constraint functions are not explicitly known but can be queried. The main goal of this work is to generate a sequence of feasible points converging towards a KKT primal-dual pair. Assuming to have prior knowledge on the smoothness of the unknown objective and constraints, we propose a novel zeroth-order method that iteratively computes quadratic approximations of the constraint functions, constructs local feasible sets and optimizes over them. Under some mild assumptions, we prove that this method returns an η\eta-KKT pair (a property reflecting how close a primal-dual pair is to the exact KKT condition) within O(1/η2)O({1}/{\eta^{2}}) iterations. Moreover, we numerically show that our method can achieve faster convergence compared with some state-of-the-art zeroth-order approaches. The effectiveness of the proposed approach is also illustrated by applying it to nonconvex optimization problems in optimal control and power system operation.Comment: arXiv admin note: text overlap with arXiv:2211.0264

    Path integrals and stochastic calculus

    Full text link
    Path integrals are a ubiquitous tool in theoretical physics. However, their use is sometimes hindered by the lack of control on various manipulations -- such as performing a change of the integration path -- one would like to carry out in the light-hearted fashion that physicists enjoy. Similar issues arise in the field of stochastic calculus, which we review to prepare the ground for a proper construction of path integrals. At the level of path integration, and in arbitrary space dimension, we not only report on existing Riemannian geometry-based approaches that render path integrals amenable to the standard rules of calculus, but also bring forth new routes, based on a fully time-discretized approach, that achieve the same goal. We illustrate these various definitions of path integration on simple examples such as the diffusion of a particle on a sphere.Comment: 96 pages, 4 figures. New title, expanded introduction and additional references. Version accepted in Advandes in Physic

    Inferring networks from time series: a neural approach

    Full text link
    Network structures underlie the dynamics of many complex phenomena, from gene regulation and foodwebs to power grids and social media. Yet, as they often cannot be observed directly, their connectivities must be inferred from observations of their emergent dynamics. In this work we present a powerful and fast computational method to infer large network adjacency matrices from time series data using a neural network. Using a neural network provides uncertainty quantification on the prediction in a manner that reflects both the non-convexity of the inference problem as well as the noise on the data. This is useful since network inference problems are typically underdetermined, and a feature that has hitherto been lacking from network inference methods. We demonstrate our method's capabilities by inferring line failure locations in the British power grid from observations of its response to a power cut. Since the problem is underdetermined, many classical statistical tools (e.g. regression) will not be straightforwardly applicable. Our method, in contrast, provides probability densities on each edge, allowing the use of hypothesis testing to make meaningful probabilistic statements about the location of the power cut. We also demonstrate our method's ability to learn an entire cost matrix for a non-linear model from a dataset of economic activity in Greater London. Our method outperforms OLS regression on noisy data in terms of both speed and prediction accuracy, and scales as N2N^2 where OLS is cubic. Since our technique is not specifically engineered for network inference, it represents a general parameter estimation scheme that is applicable to any parameter dimension

    Diffusion Schr\"odinger Bridge Matching

    Full text link
    Solving transport problems, i.e. finding a map transporting one given distribution to another, has numerous applications in machine learning. Novel mass transport methods motivated by generative modeling have recently been proposed, e.g. Denoising Diffusion Models (DDMs) and Flow Matching Models (FMMs) implement such a transport through a Stochastic Differential Equation (SDE) or an Ordinary Differential Equation (ODE). However, while it is desirable in many applications to approximate the deterministic dynamic Optimal Transport (OT) map which admits attractive properties, DDMs and FMMs are not guaranteed to provide transports close to the OT map. In contrast, Schr\"odinger bridges (SBs) compute stochastic dynamic mappings which recover entropy-regularized versions of OT. Unfortunately, existing numerical methods approximating SBs either scale poorly with dimension or accumulate errors across iterations. In this work, we introduce Iterative Markovian Fitting, a new methodology for solving SB problems, and Diffusion Schr\"odinger Bridge Matching (DSBM), a novel numerical algorithm for computing IMF iterates. DSBM significantly improves over previous SB numerics and recovers as special/limiting cases various recent transport methods. We demonstrate the performance of DSBM on a variety of problems
    • …
    corecore