5,910 research outputs found

    VIRTUAL ROBOT LOCOMOTION ON VARIABLE TERRAIN WITH ADVERSARIAL REINFORCEMENT LEARNING

    Get PDF
    Reinforcement Learning (RL) is a machine learning technique where an agent learns to perform a complex action by going through a repeated process of trial and error to maximize a well-defined reward function. This form of learning has found applications in robot locomotion where it has been used to teach robots to traverse complex terrain. While RL algorithms may work well in training robot locomotion, they tend to not generalize well when the agent is brought into an environment that it has never encountered before. Possible solutions from the literature include training a destabilizing adversary alongside the locomotive learning agent. The destabilizing adversary aims to destabilize the agent by applying external forces to it, which may help the locomotive agent learn to deal with unexpected scenarios. For this project, we will train a robust, simulated quadruped robot to traverse a variable terrain. We compare and analyze Proximal Policy Optimization (PPO) with and without the use of an adversarial agent, and determine which use of PPO produces the best results

    Online Optimization with Memory and Competitive Control

    Get PDF
    This paper presents competitive algorithms for a novel class of online optimization problems with memory. We consider a setting where the learner seeks to minimize the sum of a hitting cost and a switching cost that depends on the previous p decisions. This setting generalizes Smoothed Online Convex Optimization. The proposed approach, Optimistic Regularized Online Balanced Descent, achieves a constant, dimension-free competitive ratio. Further, we show a connection between online optimization with memory and online control with adversarial disturbances. This connection, in turn, leads to a new constant-competitive policy for a rich class of online control problems

    Weighted-Sampling Audio Adversarial Example Attack

    Full text link
    Recent studies have highlighted audio adversarial examples as a ubiquitous threat to state-of-the-art automatic speech recognition systems. Thorough studies on how to effectively generate adversarial examples are essential to prevent potential attacks. Despite many research on this, the efficiency and the robustness of existing works are not yet satisfactory. In this paper, we propose~\textit{weighted-sampling audio adversarial examples}, focusing on the numbers and the weights of distortion to reinforce the attack. Further, we apply a denoising method in the loss function to make the adversarial attack more imperceptible. Experiments show that our method is the first in the field to generate audio adversarial examples with low noise and high audio robustness at the minute time-consuming level.Comment: https://aaai.org/Papers/AAAI/2020GB/AAAI-LiuXL.9260.pd
    • …
    corecore