65,110 research outputs found

    The Deep Weight Prior

    Get PDF
    Bayesian inference is known to provide a general framework for incorporating prior knowledge or specific properties into machine learning models via carefully choosing a prior distribution. In this work, we propose a new type of prior distributions for convolutional neural networks, deep weight prior (DWP), that exploit generative models to encourage a specific structure of trained convolutional filters e.g., spatial correlations of weights. We define DWP in the form of an implicit distribution and propose a method for variational inference with such type of implicit priors. In experiments, we show that DWP improves the performance of Bayesian neural networks when training data are limited, and initialization of weights with samples from DWP accelerates training of conventional convolutional neural networks.Comment: TL;DR: The deep weight prior learns a generative model for kernels of convolutional neural networks, that acts as a prior distribution while training on new dataset

    Geometrical Insights for Implicit Generative Modeling

    Full text link
    Learning algorithms for implicit generative models can optimize a variety of criteria that measure how the data distribution differs from the implicit model distribution, including the Wasserstein distance, the Energy distance, and the Maximum Mean Discrepancy criterion. A careful look at the geometries induced by these distances on the space of probability measures reveals interesting differences. In particular, we can establish surprising approximate global convergence guarantees for the 11-Wasserstein distance,even when the parametric generator has a nonconvex parametrization.Comment: this version fixes a typo in a definitio

    Methods for Optimization and Regularization of Generative Models

    Get PDF
    This thesis studies the problem of regularizing and optimizing generative models, often using insights and techniques from kernel methods. The work proceeds in three main themes. Conditional score estimation. We propose a method for estimating conditional densities based on a rich class of RKHS exponential family models. The algorithm works by solving a convex quadratic problem for fitting the gradient of the log density, the score, thus avoiding the need for estimating the normalizing constant. We show the resulting estimator to be consistent and provide convergence rates when the model is well-specified. Structuring and regularizing implicit generative models. In a first contribution, we introduce a method for learning Generative Adversarial Networks, a class of Implicit Generative Models, using a parametric family of Maximum Mean Discrepancies (MMD). We show that controlling the gradient of the critic function defining the MMD is vital for having a sensible loss function. Moreover, we devise a method to enforce exact, analytical gradient constraints. As a second contribution, we introduce and study a new generative model suited for data with low intrinsic dimension embedded in a high dimensional space. This model combines two components: an implicit model, which can learn the low-dimensional support of data, and an energy function, to refine the probability mass by importance sampling on the support of the implicit model. We further introduce algorithms for learning such a hybrid model and for efficient sampling. Optimizing implicit generative models. We first study the Wasserstein gradient flow of the Maximum Mean Discrepancy in a non-parametric setting and provide smoothness conditions on the trajectory of the flow to ensure global convergence. We identify cases when this condition does not hold and propose a new algorithm based on noise injection to mitigate this problem. In a second contribution, we consider the Wasserstein gradient flow of generic loss functionals in a parametric setting. This flow is invariant to the model's parameterization, just like the Fisher gradient flows in information geometry. It has the additional benefit to be well defined even for models with varying supports, which is particularly well suited for implicit generative models. We then introduce a general framework for approximating the Wasserstein natural gradient by leveraging a dual formulation of the Wasserstein pseudo-Riemannian metric that we restrict to a Reproducing Kernel Hilbert Space. The resulting estimator is scalable and provably consistent as it relies on Nystrom methods
    corecore