13,971 research outputs found

    Noise-Tolerant Learning, the Parity Problem, and the Statistical Query Model

    Full text link
    We describe a slightly sub-exponential time algorithm for learning parity functions in the presence of random classification noise. This results in a polynomial-time algorithm for the case of parity functions that depend on only the first O(log n log log n) bits of input. This is the first known instance of an efficient noise-tolerant algorithm for a concept class that is provably not learnable in the Statistical Query model of Kearns. Thus, we demonstrate that the set of problems learnable in the statistical query model is a strict subset of those problems learnable in the presence of noise in the PAC model. In coding-theory terms, what we give is a poly(n)-time algorithm for decoding linear k by n codes in the presence of random noise for the case of k = c log n loglog n for some c > 0. (The case of k = O(log n) is trivial since one can just individually check each of the 2^k possible messages and choose the one that yields the closest codeword.) A natural extension of the statistical query model is to allow queries about statistical properties that involve t-tuples of examples (as opposed to single examples). The second result of this paper is to show that any class of functions learnable (strongly or weakly) with t-wise queries for t = O(log n) is also weakly learnable with standard unary queries. Hence this natural extension to the statistical query model does not increase the set of weakly learnable functions

    A Framework for Efficient Adaptively Secure Composable Oblivious Transfer in the ROM

    Get PDF
    Oblivious Transfer (OT) is a fundamental cryptographic protocol that finds a number of applications, in particular, as an essential building block for two-party and multi-party computation. We construct a round-optimal (2 rounds) universally composable (UC) protocol for oblivious transfer secure against active adaptive adversaries from any OW-CPA secure public-key encryption scheme with certain properties in the random oracle model (ROM). In terms of computation, our protocol only requires the generation of a public/secret-key pair, two encryption operations and one decryption operation, apart from a few calls to the random oracle. In~terms of communication, our protocol only requires the transfer of one public-key, two ciphertexts, and three binary strings of roughly the same size as the message. Next, we show how to instantiate our construction under the low noise LPN, McEliece, QC-MDPC, LWE, and CDH assumptions. Our instantiations based on the low noise LPN, McEliece, and QC-MDPC assumptions are the first UC-secure OT protocols based on coding assumptions to achieve: 1) adaptive security, 2) optimal round complexity, 3) low communication and computational complexities. Previous results in this setting only achieved static security and used costly cut-and-choose techniques.Our instantiation based on CDH achieves adaptive security at the small cost of communicating only two more group elements as compared to the gap-DH based Simplest OT protocol of Chou and Orlandi (Latincrypt 15), which only achieves static security in the ROM

    Leveraging Crowdsourcing Data For Deep Active Learning - An Application: Learning Intents in Alexa

    Full text link
    This paper presents a generic Bayesian framework that enables any deep learning model to actively learn from targeted crowds. Our framework inherits from recent advances in Bayesian deep learning, and extends existing work by considering the targeted crowdsourcing approach, where multiple annotators with unknown expertise contribute an uncontrolled amount (often limited) of annotations. Our framework leverages the low-rank structure in annotations to learn individual annotator expertise, which then helps to infer the true labels from noisy and sparse annotations. It provides a unified Bayesian model to simultaneously infer the true labels and train the deep learning model in order to reach an optimal learning efficacy. Finally, our framework exploits the uncertainty of the deep learning model during prediction as well as the annotators' estimated expertise to minimize the number of required annotations and annotators for optimally training the deep learning model. We evaluate the effectiveness of our framework for intent classification in Alexa (Amazon's personal assistant), using both synthetic and real-world datasets. Experiments show that our framework can accurately learn annotator expertise, infer true labels, and effectively reduce the amount of annotations in model training as compared to state-of-the-art approaches. We further discuss the potential of our proposed framework in bridging machine learning and crowdsourcing towards improved human-in-the-loop systems
    • …
    corecore