260 research outputs found

    Antagonistic Co-Contraction Can Minimize Muscular Effort in Systems With Uncertainty

    Get PDF
    Muscular co-contraction of antagonistic muscle pairs is often observed in human movement, but it is considered inefficient and it can currently not be predicted insimulations where muscular effort or metabolic energy are minimized. Here, we investigated the relationship between minimizing effort and muscular co-contractionin systems with random uncertainty to see if muscular co-contraction can minimize effort in such system. We also investigated the effect of time delay in the muscle, by varying the time delay in the neural control as well as the activation time constant.We solved optimal control problems for a one-degree-of-freedom pendulum actuated by two identical antagonistic muscles, using forward shooting, to find controller parameters that minimized muscular effort while the pendulum remained upright in the presence of noise added to the moment at the base of the pendulum. We compared a controller with and without feed forward control. Task precision was defined by bounding the root mean square deviation from the upright position, while different perturbation levels defined task difficulty. We found that effort was minimized when the feedforward control was nonzero, even when feedforward control was not necessary to perform the task, which indicates that co-contraction can minimize effort in systems with uncertainty. We also found that the optimal level of co-contraction increased with time delay, both when the activation time constant was increased and when neural time delay was added. Furthermore, we found that for controllers with a neural time delay, a different trajectory was optimal for a ontroller with feedforward control than for one without, which indicates that simulation trajectories are dependent on the controller architecture. Future movement predictions should therefore account for uncertainty in dynamics and control, and carefully choose the controller architecture. The ability of models to predict co-contraction from effort or energy minimization has important clinical and sports applications. If co-contraction is undesirable, one should aim to remove the cause of co-contraction rather than the co-contraction itself

    Tele-impedance based assistive control for a compliant knee exoskeleton

    Get PDF
    This paper presents a tele-impedance based assistive control scheme for a knee exoskeleton device. The proposed controller captures the user’s intent to generate task-related assistive torques by means of the exoskeleton in different phases of the subject’s normal activity. To do so, a detailed musculoskeletal model of the human knee is developed and experimentally calibrated to best match the user’s kinematic and dynamic behavior. Three dominant antagonistic muscle pairs are used in our model, in which electromyography (EMG) signals are acquired, processed and used for the estimation of the knee joint torque, trajectory and the stiffness trend, in real time. The estimated stiffness trend is then scaled and mapped to a task-related stiffness interval to agree with the desired degree of assistance. The desired stiffness and equilibrium trajectories are then tracked by the exoskeleton’s impedance controller. As a consequence, while minimum muscular activity corresponds to low stiffness, i.e. highly transparent motion, higher co-contractions result in a stiffer joint and a greater level of assistance. To evaluate the robustness of the proposed technique, a study of the dynamics of the human–exoskeleton system is conducted, while the stability in the steady state and transient condition is investigated. In addition, experimental results of standing-up and sitting-down tasks are demonstrated to further investigate the capabilities of the controller. The results indicate that the compliant knee exoskeleton, incorporating the proposed tele-impedance controller, can effectively generate assistive actions that are volitionally and intuitively controlled by the user’s muscle activity

    Impedance learning for robots interacting with unknown environments

    Get PDF
    In this paper, impedance learning is investigated for robots interacting with unknown environments. A twoloop control framework is employed and adaptive control is developed for the inner-loop position control. The environments are described as time-varying systems with unknown parameters in the state-space form. The gradient-following scheme and betterment scheme are employed to obtain a desired impedance model, subject to unknown environments. The desired interaction performance is achieved in the sense that a defined cost function is minimized. Simulation and experiment studies are carried out to verify the validity of the proposed method

    A Series-Elastic Robot for Back-Pain Rehabilitation

    Get PDF
    Robotics research has been broadly expanding into various fields during the past decades. It is widely spread and best known for solving many technical necessities in different fields. With the rise of the industrial revolution, it upgraded many factories to use industrial robots to prevent the human operator from dangerous and hazardous tasks. The rapid development of application fields and their complexity have inspired researchers in the robotics community to find innovative solutions to meet the new desired requirements of the field. Currently, the creation of new needs outside the traditional industrial robots are demanding robots to attend to the new market and to assist humans in meeting their daily social needs (i.e., agriculture, construction, cleaning.). The future integration of robots into other types of production processes, added new requirements that require more safety, flexibility, and intelligence in robots. Areas of robotics has evolved into various fields. This dissertation addresses robotics research in four different areas: rehabilitation robots, biologically inspired robots, optimization techniques, and neural network implementation. Although these four areas may seem different from each other, they share some research topics and applications

    From humans to humanoids: The optimal control framework

    Get PDF
    AbstractIn the last years of research in cognitive control, neuroscience and humanoid robotics have converged to different frameworks which aim, on one side, at modeling and analyzing human motion, and, on the other side, at enhancing motor abilities of humanoids. In this paper we try to cover the gap between the two areas, giving an overview of the literature in the two fields which concerns the production of movements. First, we survey computational motor control models based on optimality principles; then, we review available implementations and techniques to transfer these principles to humanoid robots, with a focus on the limitations and possible improvements of the current implementations. Moreover, we propose Stochastic Optimal Control as a framework to take into account delays and noise, thus catching the unpredictability aspects typical of both humans and humanoids systems. Optimal Control in general can also easily be integrated with Machine Learning frameworks, thus resulting in a computational implementation of human motor learning. This survey is mainly addressed to roboticists attempting to implement human-inspired controllers on robots, but can also be of interest for researchers in other fields, such as computational motor control
    • …
    corecore