35 research outputs found

    Automated Macro-scale Causal Hypothesis Formation Based on Micro-scale Observation

    Get PDF
    This book introduces new concepts at the intersection of machine learning, causal inference and philosophy of science: the macrovariable cause and effect. Methods for learning such from microvariable data are introduced. The learning process proposes a minimal number of guided experiments that recover the macrovariable cause from observational data. Mathematical definitions of a micro- and macro- scale manipulation, an observational and causal partition, and a subsidiary variable are given. These concepts provide a link to previous work in causal inference and machine learning. The main theoretical result is the Causal Coarsening Theorem, a new insight into the measure-theoretic structure of probability spaces and structural equation models. The theorem provides grounds for automatic causal hypothesis formation from data. Other results concern the minimality and sufficiency of representations created in accordance with the theorem. Finally, this book proposes the first algorithms for supervised and unsupervised causal macrovariable discovery. These algorithms bridge large-scale, multidimensional machine learning and causal inference. In an application to climate science, the algorithms re-discover a known causal mechanism as a viable causal hypothesis. In a psychophysical experiment, the algorithms learn to minimally change visual stimuli to achieve a desired effect on human perception.</p

    Multi-Level Cause-Effect Systems

    Get PDF
    We present a domain-general account of causation that applies to settings in which macro-level causal relations between two systems are of interest, but the relevant causal features are poorly understood and have to be aggregated from vast arrays of micro-measurements. Our approach generalizes that of Chalupka et. al. (2015) to the setting in which the macro-level effect is not specified. We formalize the connection between micro- and macro-variables in such situations and provide a coherent framework describing causal relations at multiple levels of analysis. We present an algorithm that discovers macro-variable causes and effects from micro-level measurements obtained from an experiment. We further show how to design experiments to discover macro-variables from observational micro-variable data. Finally, we show that under specific conditions, one can identify multiple levels of causal structure. Throughout the article, we use a simulated neuroscience multi-unit recording experiment to illustrate the ideas and the algorithms

    Determining placement of intrusion detectors for a distributed application through bayesian network modeling.

    Get PDF
    Abstract. To secure today&apos;s computer systems, it is critical to have different intrusion detection sensors embedded in them. The complexity of distributed computer systems makes it difficult to determine the appropriate configuration of these detectors, i.e., their choice and placement. In this paper, we describe a method to evaluate the effect of the detector configuration on the accuracy and precision of determining security goals in the system. For this, we develop a Bayesian network model for the distributed system, from an attack graph representation of multi-stage attacks in the system. We use Bayesian inference to solve the problem of determining the likelihood that an attack goal has been achieved, given a certain set of detector alerts. We quantify the overall detection performance in the system for different detector settings, namely, choice and placement of the detectors, their quality, and levels of uncertainty of adversarial behavior. These observations lead us to a greedy algorithm for determining the optimal detector settings in a large-scale distributed system. We present the results of experiments on Bayesian networks representing two real distributed systems and real attacks on them

    Stateful Detection in High Throughput Distributed Systems

    Get PDF
    With the increasing speed of computers, complexity of applications and large scale of applications, many of today’s distributed systems exchange data at a high rate. It is important to provide error detection capabilities to such applications that provide critical functionality. Significant prior work has been done in software implemented error detection achieved through a fault tolerance system separate from the application system. However, the high rate of data coupled with complex detection can cause the capacity of the fault tolerance system to be exhausted resulting in low detection accuracy. This is particularly the case when the detection is done against rules based on state that has been generated in the system. We present a new stateful detection mechanism which is based on observing messages exchanged between the protocol participants, deducing the application state from them, and matching against anomaly based rules. We have previously shown the capacity constraint of the detection framework called the Monitor. Here we extend the Monitor framework to incorporate a sampling approach which adjusts the rate of messages to be verified by sampling the incoming application stream of messages. The adjustment is such that the breakdown in the Monitor capacity is avoided. The cost of processing each message increases because the application state is no longer accurately known at the Monitor. However, the overall detection cost is reduced due to the lower rate of messages processed. We show that even with sampling, the Monitor is able to track the possible state of the protocol entity and provide stateful detection. We implement the approach and apply it to a reliable multicast protocol called TRAM. We demonstrate the gains of the approach by comparing the latency and accuracy of fault detection to the baseline Monitor system

    Improving the resilience of cyber-physical systems under strategic adversaries

    Get PDF
    Renewable energy resources challenge traditional energy system operations by substituting the stability and predictability of fossil fuel based generation with the unreliability and uncertainty of wind and solar power. Rising demand for green energy drives grid operators to integrate sensors, smart meters, and distributed control to compensate for this uncertainty and improve the operational efficiency of the grid. Real-time negotiations enable producers and consumers to adjust power loads during shortage periods, such as an unexpected outage or weather event, and to adapt to time-varying energy needs. While such systems improve grid performance, practical implementation challenges can derail the operation of these distributed cyber-physical systems. Network disruptions introduce instability into control feedback systems, and strategic adversaries can manipulate power markets for financial gain. This dissertation analyzes the impact of these outages and adversaries on cyber-physical systems and provides methods for improving resilience, with an emphasis on distributed energy systems. First, a financial model of an interdependent energy market lays the groundwork for profit-oriented attacks and defenses, and a game theoretic strategy optimizes attack plans and defensive investments in energy systems with multiple independent actors. Then attacks and defenses are translated from a theoretical context to a real-time energy market via denial of service (DoS) outages and moving target defenses. Analysis on two market mechanisms shows how adversaries can disrupt market operation, destabilize negotiations, and extract profits by attacking network links and disrupting communication. Finally, a low-cost DoS defense technique demonstrates a method that energy systems may use to defend against attacks

    Machine learning and dynamic programming algorithms for motion planning and control

    Get PDF
    Robot motion planning is one of the central problems in robotics, and has received considerable amount of attention not only from roboticists but also from the control and artificial intelligence (AI) communities. Despite the different types of applications and physical properties of robotic systems, many high-level tasks of autonomous systems can be decomposed into subtasks which require point-to-point navigation while avoiding infeasible regions due to the obstacles in the workspace. This dissertation aims at developing a new class of sampling-based motion planning algorithms that are fast, efficient and asymptotically optimal by employing ideas from Machine Learning (ML) and Dynamic Programming (DP). First, we interpret the robot motion planning problem as a form of a machine learning problem since the underlying search space is not known a priori, and utilize random geometric graphs to compute consistent discretizations of the underlying continuous search space. Then, we integrate existing DP algorithms and ML algorithms to the framework of sampling-based algorithms for better exploitation and exploration, respectively. We introduce a novel sampling-based algorithm, called RRT#, that improves upon the well-known RRT* algorithm by leveraging value and policy iteration methods as new information is collected. The proposed algorithms yield provable guarantees on correctness, completeness and asymptotic optimality. We also develop an adaptive sampling strategy by considering exploration as a classification (or regression) problem, and use online machine learning algorithms to learn the relevant region of a query, i.e., the region that contains the optimal solution, without significant computational overhead. We then extend the application of sampling-based algorithms to a class of stochastic optimal control problems and problems with differential constraints. Specifically, we introduce the Path Integral - RRT algorithm, for solving optimal control of stochastic systems and the CL-RRT# algorithm that uses closed-loop prediction for trajectory generation for differential systems. One of the key benefits of CL-RRT# is that for many systems, given a low-level tracking controller, it is easier to handle differential constraints, so complex steering procedures are not needed, unlike most existing kinodynamic sampling-based algorithms. Implementation results of sampling-based planners for route planning of a full-scale autonomous helicopter under the Autonomous Aerial Cargo/Utility System Program (AACUS) program are provided.Ph.D

    A Survey on Data Plane Programming with P4: Fundamentals, Advances, and Applied Research

    Full text link
    With traditional networking, users can configure control plane protocols to match the specific network configuration, but without the ability to fundamentally change the underlying algorithms. With SDN, the users may provide their own control plane, that can control network devices through their data plane APIs. Programmable data planes allow users to define their own data plane algorithms for network devices including appropriate data plane APIs which may be leveraged by user-defined SDN control. Thus, programmable data planes and SDN offer great flexibility for network customization, be it for specialized, commercial appliances, e.g., in 5G or data center networks, or for rapid prototyping in industrial and academic research. Programming protocol-independent packet processors (P4) has emerged as the currently most widespread abstraction, programming language, and concept for data plane programming. It is developed and standardized by an open community and it is supported by various software and hardware platforms. In this paper, we survey the literature from 2015 to 2020 on data plane programming with P4. Our survey covers 497 references of which 367 are scientific publications. We organize our work into two parts. In the first part, we give an overview of data plane programming models, the programming language, architectures, compilers, targets, and data plane APIs. We also consider research efforts to advance P4 technology. In the second part, we analyze a large body of literature considering P4-based applied research. We categorize 241 research papers into different application domains, summarize their contributions, and extract prototypes, target platforms, and source code availability.Comment: Submitted to IEEE Communications Surveys and Tutorials (COMS) on 2021-01-2

    The Daily Egyptian, May 04, 1999

    Get PDF

    Sparse Bayesian information filters for localization and mapping

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2008This thesis formulates an estimation framework for Simultaneous Localization and Mapping (SLAM) that addresses the problem of scalability in large environments. We describe an estimation-theoretic algorithm that achieves significant gains in computational efficiency while maintaining consistent estimates for the vehicle pose and the map of the environment. We specifically address the feature-based SLAM problem in which the robot represents the environment as a collection of landmarks. The thesis takes a Bayesian approach whereby we maintain a joint posterior over the vehicle pose and feature states, conditioned upon measurement data. We model the distribution as Gaussian and parametrize the posterior in the canonical form, in terms of the information (inverse covariance) matrix. When sparse, this representation is amenable to computationally efficient Bayesian SLAM filtering. However, while a large majority of the elements within the normalized information matrix are very small in magnitude, it is fully populated nonetheless. Recent feature-based SLAM filters achieve the scalability benefits of a sparse parametrization by explicitly pruning these weak links in an effort to enforce sparsity. We analyze one such algorithm, the Sparse Extended Information Filter (SEIF), which has laid much of the groundwork concerning the computational benefits of the sparse canonical form. The thesis performs a detailed analysis of the process by which the SEIF approximates the sparsity of the information matrix and reveals key insights into the consequences of different sparsification strategies. We demonstrate that the SEIF yields a sparse approximation to the posterior that is inconsistent, suffering from exaggerated confidence estimates. This overconfidence has detrimental effects on important aspects of the SLAM process and affects the higher level goal of producing accurate maps for subsequent localization and path planning. This thesis proposes an alternative scalable filter that maintains sparsity while preserving the consistency of the distribution. We leverage insights into the natural structure of the feature-based canonical parametrization and derive a method that actively maintains an exactly sparse posterior. Our algorithm exploits the structure of the parametrization to achieve gains in efficiency, with a computational cost that scales linearly with the size of the map. Unlike similar techniques that sacrifice consistency for improved scalability, our algorithm performs inference over a posterior that is conservative relative to the nominal Gaussian distribution. Consequently, we preserve the consistency of the pose and map estimates and avoid the effects of an overconfident posterior. We demonstrate our filter alongside the SEIF and the standard EKF both in simulation as well as on two real-world datasets. While we maintain the computational advantages of an exactly sparse representation, the results show convincingly that our method yields conservative estimates for the robot pose and map that are nearly identical to those of the original Gaussian distribution as produced by the EKF, but at much less computational expense. The thesis concludes with an extension of our SLAM filter to a complex underwater environment. We describe a systems-level framework for localization and mapping relative to a ship hull with an Autonomous Underwater Vehicle (AUV) equipped with a forward-looking sonar. The approach utilizes our filter to fuse measurements of vehicle attitude and motion from onboard sensors with data from sonar images of the hull. We employ the system to perform three-dimensional, 6-DOF SLAM on a ship hull
    corecore