3,572 research outputs found

    Building3D: An Urban-Scale Dataset and Benchmarks for Learning Roof Structures from Point Clouds

    Full text link
    Urban modeling from LiDAR point clouds is an important topic in computer vision, computer graphics, photogrammetry and remote sensing. 3D city models have found a wide range of applications in smart cities, autonomous navigation, urban planning and mapping etc. However, existing datasets for 3D modeling mainly focus on common objects such as furniture or cars. Lack of building datasets has become a major obstacle for applying deep learning technology to specific domains such as urban modeling. In this paper, we present a urban-scale dataset consisting of more than 160 thousands buildings along with corresponding point clouds, mesh and wire-frame models, covering 16 cities in Estonia about 998 Km2. We extensively evaluate performance of state-of-the-art algorithms including handcrafted and deep feature based methods. Experimental results indicate that Building3D has challenges of high intra-class variance, data imbalance and large-scale noises. The Building3D is the first and largest urban-scale building modeling benchmark, allowing a comparison of supervised and self-supervised learning methods. We believe that our Building3D will facilitate future research on urban modeling, aerial path planning, mesh simplification, and semantic/part segmentation etc

    Cost-Effective as-Built BIM Modelling Using 3D Point- Clouds and Photogrammetry

    Get PDF
    The classification and translation of 3D point-clouds into virtual environments is a time consuming and often tedious process. While there are large crowd sourcing projects for segmenting general environments, there are no such projects with a focus on AEC industries. The nature of these industries makes industry-specific projects too esoteric for conventional approaches to data collation. However, in contrast to other projects, the built environment has a rich data set of BIM and other 3D models with mutable properties and implicitly embedded relationships which are ripe for exploitation. In this article, the readers will find discussion on contemporary applications of image processing, photogrammetry, BIM and artificial intelligence. They will also find discussions on the applications of artificial intelligence, photogrammetry in BIM and image processing that will likely be at the forefront of related research in the coming years.<br/

    Deep learning for semantic segmentation of 3D point cloud.

    Get PDF
    Cultural Heritage is a testimony of past human activity, and, as such, its objects exhibit great variety in their nature, size and complexity; from small artefacts and museum items to cultural landscapes, from historical building and ancient monuments to city centers and archaeological sites. Cultural Heritage around the globe suffers from wars, natural disasters and human negligence. The importance of digital documentation is well recognized and there is an increasing pressure to document our heritage both nationally and internationally. For this reason, the three-dimensional scanning and modeling of sites and artifacts of cultural heritage have remarkably increased in recent years. The semantic segmentation of point clouds is an essential step of the entire pipeline; in fact, it allows to decompose complex architectures in single elements, which are then enriched with meaningful information within Building Information Modelling software. Notwithstanding, this step is very time consuming and completely entrusted on the manual work of domain experts, far from being automatized. This work describes a method to label and cluster automatically a point cloud based on a supervised Deep Learning approach, using a state-of-the-art Neural Network called PointNet++. Despite other methods are known, we have choose PointNet++ as it reached significant results for classifying and segmenting 3D point clouds. PointNet++ has been tested and improved, by training the network with annotated point clouds coming from a real survey and to evaluate how performance changes according to the input training data. It can result of great interest for the research community dealing with the point cloud semantic segmentation, since it makes public a labelled dataset of CH elements for further tests

    Multi-task 3D building understanding with multi-modal pretraining

    Full text link
    This paper explores various learning strategies for 3D building type classification and part segmentation on the BuildingNet dataset. ULIP with PointNeXt and PointNeXt segmentation are extended for the classification and segmentation task on BuildingNet dataset. The best multi-task PointNeXt-s model with multi-modal pretraining achieves 59.36 overall accuracy for 3D building type classification, and 31.68 PartIoU for 3D building part segmentation on validation split. The final PointNeXt XL model achieves 31.33 PartIoU and 22.78 ShapeIoU on test split for BuildingNet-Points segmentation, which significantly improved over PointNet++ model reported from BuildingNet paper, and it won the 1st place in the BuildingNet challenge at CVPR23 StruCo3D workshop.Comment: 8 pages, 9 figures, 9 table

    Statistical relational learning of semantic models and grammar rules for 3D building reconstruction from 3D point clouds

    Get PDF
    Formal grammars are well suited for the estimation of models with an a-priori unknown number of parameters such as buildings and have proven their worth for 3D modeling and reconstruction of cities. However, the generation and design of corresponding grammar rules is a laborious task and relies on expert knowledge. This thesis presents novel approaches for the reduction of this effort using advanced machine learning methods resulting in automatically learned sophisticated grammar rules. Indeed, the learning of a wide range of sophisticated rules, that reflect the variety and complexity, is a challenging task. This is especially the case if a simultaneous machine learning of building structures and the underlying aggregation hierarchies as well as the building parameters and the constraints among them for a semantic interpretation is expected. Thus, in this thesis, an incremental approach is followed. It separates the structure learning from the parameter distribution learning of building parts. Moreover, the so far procedural approaches with formal grammars are mostly rather convenient for the generation of virtual city models than for the reconstruction of existing buildings. To this end, Inductive Logic Programming (ILP) techniques are transferred and applied for the first time in the field of 3D building modeling. This enables the automatic learning of declarative logic programs, which are equivalent to attribute grammars and separate the representation of buildings and their parts from the reconstruction task. A stepwise bottom-up learning, starting from the smallest atomic features of a building part together with the semantic, topological and geometric constraints, is a key to a successful learning of a whole building part. Only few examples are sufficient to learn from precise as well as noisy observations. The learning from uncertain data is realized using probability density functions, decision trees and uncertain projective geometry. This enables the handling and modeling of uncertain topology and geometric reasoning taking noise into consideration. The uncertainty of models itself is also considered. Therefore, a novel method is developed for the learning of Weighted Attribute Context-Free Grammar (WACFG). On the one hand, the structure learning of façades – context-free part of the Grammar – is performed based on annotated derivation trees using specific Support Vector Machines (SVMs). The latter are able to derive probabilistic models from structured data and to predict a most likely tree regarding to given observations. On the other hand, to the best of my knowledge, Statistical Relational Learning (SRL), especially Markov Logic Networks (MLNs), are applied for the first time in order to learn building part (shape and location) parameters as well as the constraints among these parts. The use of SRL enables to take profit from the elegant logical relational description and to benefit from the efficiency of statistical inference methods. In order to model latent prior knowledge and exploit the architectural regularities of buildings, a novel method is developed for the automatic identification of translational as well as axial symmetries. For symmetry identification a supervised machine learning approach is followed based on an SVM classifier. Building upon the classification results, algorithms are designed for the representation of symmetries using context-free grammars from authoritative building footprints. In all steps the machine learning is performed based on real- world data such as 3D point clouds and building footprints. The handling with uncertainty and occlusions is assured. The presented methods have been successfully applied on real data. The belonging classification and reconstruction results are shown.Statistisches relationales Lernen von semantischen Modellen und Grammatikregeln fĂŒr 3D GebĂ€uderekonstruktion aus 3D Punktwolken Formale Grammatiken eignen sich sehr gut zur SchĂ€tzung von Modellen mit a-priori unbekannter Anzahl von Parametern und haben sich daher als guter Ansatz zur Rekonstruktion von StĂ€dten mittels 3D Stadtmodellen bewĂ€hrt. Der Entwurf und die Erstellung der dazugehörigen Grammatikregeln benötigt jedoch Expertenwissen und ist mit großem Aufwand verbunden. Im Rahmen dieser Arbeit wurden Verfahren entwickelt, die diesen Aufwand unter Zuhilfenahme von leistungsfĂ€higen Techniken des maschinellen Lernens reduzieren und automatisches Lernen von Regeln ermöglichen. Das Lernen umfangreicher Grammatiken, die die Vielfalt und KomplexitĂ€t der GebĂ€ude und ihrer Bestandteile widerspiegeln, stellt eine herausfordernde Aufgabe dar. Dies ist insbesondere der Fall, wenn zur semantischen Interpretation sowohl das Lernen der Strukturen und Aggregationshierarchien als auch von Parametern der zu lernenden Objekte gleichzeitig statt finden soll. Aus diesem Grund wird hier ein inkrementeller Ansatz verfolgt, der das Lernen der Strukturen vom Lernen der Parameterverteilungen und Constraints zielfĂŒhrend voneinander trennt. Existierende prozedurale AnsĂ€tze mit formalen Grammatiken sind eher zur Generierung von synthetischen Stadtmodellen geeignet, aber nur bedingt zur Rekonstruktion existierender GebĂ€ude nutzbar. HierfĂŒr werden in dieser Schrift Techniken der Induktiven Logischen Programmierung (ILP) zum ersten Mal auf den Bereich der 3D GebĂ€udemodellierung ĂŒbertragen. Dies fĂŒhrt zum Lernen deklarativer logischer Programme, die hinsichtlich ihrer AusdrucksstĂ€rke mit attributierten Grammatiken gleichzusetzen sind und die ReprĂ€sentation der GebĂ€ude von der Rekonstruktionsaufgabe trennen. Das Lernen von zuerst disaggregierten atomaren Bestandteilen sowie der semantischen, topologischen und geometrischen Beziehungen erwies sich als SchlĂŒssel zum Lernen der Gesamtheit eines GebĂ€udeteils. Das Lernen erfolgte auf Basis einiger weniger sowohl prĂ€ziser als auch verrauschter Beispielmodelle. Um das Letztere zu ermöglichen, wurde auf Wahrscheinlichkeitsdichteverteilungen, EntscheidungsbĂ€umen und unsichere projektive Geometrie zurĂŒckgegriffen. Dies erlaubte den Umgang mit und die Modellierung von unsicheren topologischen Relationen sowie unscharfer Geometrie. Um die Unsicherheit der Modelle selbst abbilden zu können, wurde ein Verfahren zum Lernen Gewichteter Attributierter Kontextfreier Grammatiken (Weighted Attributed Context-Free Grammars, WACFG) entwickelt. Zum einen erfolgte das Lernen der Struktur von Fassaden –kontextfreier Anteil der Grammatik – aus annotierten HerleitungsbĂ€umen mittels spezifischer Support Vektor Maschinen (SVMs), die in der Lage sind, probabilistische Modelle aus strukturierten Daten abzuleiten und zu prĂ€dizieren. Zum anderen wurden nach meinem besten Wissen Methoden des statistischen relationalen Lernens (SRL), insbesondere Markov Logic Networks (MLNs), erstmalig zum Lernen von Parametern von GebĂ€uden sowie von bestehenden Relationen und Constraints zwischen ihren Bestandteilen eingesetzt. Das Nutzen von SRL erlaubt es, die eleganten relationalen Beschreibungen der Logik mit effizienten Methoden der statistischen Inferenz zu verbinden. Um latentes Vorwissen zu modellieren und architekturelle RegelmĂ€ĂŸigkeiten auszunutzen, ist ein Verfahren zur automatischen Erkennung von Translations- und Spiegelsymmetrien und deren ReprĂ€sentation mittels kontextfreier Grammatiken entwickelt worden. HierfĂŒr wurde mittels ĂŒberwachtem Lernen ein SVM-Klassifikator entwickelt und implementiert. Basierend darauf wurden Algorithmen zur Induktion von Grammatikregeln aus Grundrissdaten entworfen
    • 

    corecore