2,840 research outputs found

    On Consistency of Graph-based Semi-supervised Learning

    Full text link
    Graph-based semi-supervised learning is one of the most popular methods in machine learning. Some of its theoretical properties such as bounds for the generalization error and the convergence of the graph Laplacian regularizer have been studied in computer science and statistics literatures. However, a fundamental statistical property, the consistency of the estimator from this method has not been proved. In this article, we study the consistency problem under a non-parametric framework. We prove the consistency of graph-based learning in the case that the estimated scores are enforced to be equal to the observed responses for the labeled data. The sample sizes of both labeled and unlabeled data are allowed to grow in this result. When the estimated scores are not required to be equal to the observed responses, a tuning parameter is used to balance the loss function and the graph Laplacian regularizer. We give a counterexample demonstrating that the estimator for this case can be inconsistent. The theoretical findings are supported by numerical studies.Comment: This paper is accepted by 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS

    Semi-Supervised Single- and Multi-Domain Regression with Multi-Domain Training

    Full text link
    We address the problems of multi-domain and single-domain regression based on distinct and unpaired labeled training sets for each of the domains and a large unlabeled training set from all domains. We formulate these problems as a Bayesian estimation with partial knowledge of statistical relations. We propose a worst-case design strategy and study the resulting estimators. Our analysis explicitly accounts for the cardinality of the labeled sets and includes the special cases in which one of the labeled sets is very large or, in the other extreme, completely missing. We demonstrate our estimators in the context of removing expressions from facial images and in the context of audio-visual word recognition, and provide comparisons to several recently proposed multi-modal learning algorithms.Comment: 24 pages, 6 figures, 2 table

    Semi-supervised cross-entropy clustering with information bottleneck constraint

    Full text link
    In this paper, we propose a semi-supervised clustering method, CEC-IB, that models data with a set of Gaussian distributions and that retrieves clusters based on a partial labeling provided by the user (partition-level side information). By combining the ideas from cross-entropy clustering (CEC) with those from the information bottleneck method (IB), our method trades between three conflicting goals: the accuracy with which the data set is modeled, the simplicity of the model, and the consistency of the clustering with side information. Experiments demonstrate that CEC-IB has a performance comparable to Gaussian mixture models (GMM) in a classical semi-supervised scenario, but is faster, more robust to noisy labels, automatically determines the optimal number of clusters, and performs well when not all classes are present in the side information. Moreover, in contrast to other semi-supervised models, it can be successfully applied in discovering natural subgroups if the partition-level side information is derived from the top levels of a hierarchical clustering

    Density-sensitive semisupervised inference

    Full text link
    Semisupervised methods are techniques for using labeled data (X1,Y1),…,(Xn,Yn)(X_1,Y_1),\ldots,(X_n,Y_n) together with unlabeled data Xn+1,…,XNX_{n+1},\ldots,X_N to make predictions. These methods invoke some assumptions that link the marginal distribution PXP_X of X to the regression function f(x). For example, it is common to assume that f is very smooth over high density regions of PXP_X. Many of the methods are ad-hoc and have been shown to work in specific examples but are lacking a theoretical foundation. We provide a minimax framework for analyzing semisupervised methods. In particular, we study methods based on metrics that are sensitive to the distribution PXP_X. Our model includes a parameter α\alpha that controls the strength of the semisupervised assumption. We then use the data to adapt to α\alpha.Comment: Published in at http://dx.doi.org/10.1214/13-AOS1092 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore