44,607 research outputs found

    Weakly supervised learning with stochastic supervision and knowledge transfer

    Get PDF
    In recent years, machine learning methods especially supervised learning methods have achieved great progress in both methodologies and applications. However, in supervised learning, each training sample requires a label to indicate its ground-truth. In many machine learning tasks, it is hard to get sufficient accurately labelled training samples. Weakly supervised learning is an extended setting of supervised learning to more general tasks. In this thesis, we focus on proposing novel methods for inaccurate supervision and incomplete supervision under the setting of weakly supervised learning. In inaccurate supervision, problems with nondeterministic labels, such as stochastic supervision problems, are rarely discussed. In stochastic supervision, the supervision is a probabilistic assessment rather than a deterministic label. In Chapter 2, we provide four generalisations of stochastic supervision models, extending them to asymmetric assessments, multiple classes, feature-dependent assessments, and multi-modal classes, respectively. Corresponding to these generalisations, four new EM algorithms are derived. We show the effectiveness of our generalisations through illustrative examples of simulated datasets, as well as real-world examples of two famous datasets, the MNIST dataset, and the CIFAR-10 dataset. For incomplete supervision problems, we focus on improving the semi-supervised learning in one domain/task by transferring knowledge from another domain/task or from many domains/tasks. In Chapter 3, a novel domain-adaptation-based method is proposed to improve a typical application of semi-supervised learning: the pose estimation, in which the implicit density estimation problem in the domain adaptation is solved by using a neural network to approximate it. The proposed method transfers the knowledge from the training samples in the synthetic data domain to improve the learner in the real data domain, and achieves state-of-the-art performance. In Chapter 4, we focus on transferring knowledge from many tasks to improve the semi-supervised few-shot learning. We use meta-learning to transfer knowledge from many meta-train tasks. A tailor-made ensemble method for few-shot learning is proposed to relieve the pseudo-label noise problem in the semi-supervised few-shot learning. The proposed method also achieves state-of-the-art performances in two widely used benchmark datasets (miniImageNet and tieredImageNet) in few-shot learning

    A Survey on Label-efficient Deep Image Segmentation: Bridging the Gap between Weak Supervision and Dense Prediction

    Full text link
    The rapid development of deep learning has made a great progress in image segmentation, one of the fundamental tasks of computer vision. However, the current segmentation algorithms mostly rely on the availability of pixel-level annotations, which are often expensive, tedious, and laborious. To alleviate this burden, the past years have witnessed an increasing attention in building label-efficient, deep-learning-based image segmentation algorithms. This paper offers a comprehensive review on label-efficient image segmentation methods. To this end, we first develop a taxonomy to organize these methods according to the supervision provided by different types of weak labels (including no supervision, inexact supervision, incomplete supervision and inaccurate supervision) and supplemented by the types of segmentation problems (including semantic segmentation, instance segmentation and panoptic segmentation). Next, we summarize the existing label-efficient image segmentation methods from a unified perspective that discusses an important question: how to bridge the gap between weak supervision and dense prediction -- the current methods are mostly based on heuristic priors, such as cross-pixel similarity, cross-label constraint, cross-view consistency, and cross-image relation. Finally, we share our opinions about the future research directions for label-efficient deep image segmentation.Comment: Accepted to IEEE TPAM

    Improving Distantly-Supervised Named Entity Recognition with Self-Collaborative Denoising Learning

    Full text link
    Distantly supervised named entity recognition (DS-NER) efficiently reduces labor costs but meanwhile intrinsically suffers from the label noise due to the strong assumption of distant supervision. Typically, the wrongly labeled instances comprise numbers of incomplete and inaccurate annotation noise, while most prior denoising works are only concerned with one kind of noise and fail to fully explore useful information in the whole training set. To address this issue, we propose a robust learning paradigm named Self-Collaborative Denoising Learning (SCDL), which jointly trains two teacher-student networks in a mutually-beneficial manner to iteratively perform noisy label refinery. Each network is designed to exploit reliable labels via self denoising, and two networks communicate with each other to explore unreliable annotations by collaborative denoising. Extensive experimental results on five real-world datasets demonstrate that SCDL is superior to state-of-the-art DS-NER denoising methods.Comment: EMNLP (12 pages, 4 figures, 6 tables

    Learning and Reasoning for Robot Sequential Decision Making under Uncertainty

    Full text link
    Robots frequently face complex tasks that require more than one action, where sequential decision-making (SDM) capabilities become necessary. The key contribution of this work is a robot SDM framework, called LCORPP, that supports the simultaneous capabilities of supervised learning for passive state estimation, automated reasoning with declarative human knowledge, and planning under uncertainty toward achieving long-term goals. In particular, we use a hybrid reasoning paradigm to refine the state estimator, and provide informative priors for the probabilistic planner. In experiments, a mobile robot is tasked with estimating human intentions using their motion trajectories, declarative contextual knowledge, and human-robot interaction (dialog-based and motion-based). Results suggest that, in efficiency and accuracy, our framework performs better than its no-learning and no-reasoning counterparts in office environment.Comment: In proceedings of 34th AAAI conference on Artificial Intelligence, 202

    Learning Shape Priors for Single-View 3D Completion and Reconstruction

    Full text link
    The problem of single-view 3D shape completion or reconstruction is challenging, because among the many possible shapes that explain an observation, most are implausible and do not correspond to natural objects. Recent research in the field has tackled this problem by exploiting the expressiveness of deep convolutional networks. In fact, there is another level of ambiguity that is often overlooked: among plausible shapes, there are still multiple shapes that fit the 2D image equally well; i.e., the ground truth shape is non-deterministic given a single-view input. Existing fully supervised approaches fail to address this issue, and often produce blurry mean shapes with smooth surfaces but no fine details. In this paper, we propose ShapeHD, pushing the limit of single-view shape completion and reconstruction by integrating deep generative models with adversarially learned shape priors. The learned priors serve as a regularizer, penalizing the model only if its output is unrealistic, not if it deviates from the ground truth. Our design thus overcomes both levels of ambiguity aforementioned. Experiments demonstrate that ShapeHD outperforms state of the art by a large margin in both shape completion and shape reconstruction on multiple real datasets.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://shapehd.csail.mit.edu

    SANTA: Separate Strategies for Inaccurate and Incomplete Annotation Noise in Distantly-Supervised Named Entity Recognition

    Full text link
    Distantly-Supervised Named Entity Recognition effectively alleviates the burden of time-consuming and expensive annotation in the supervised setting. But the context-free matching process and the limited coverage of knowledge bases introduce inaccurate and incomplete annotation noise respectively. Previous studies either considered only incomplete annotation noise or indiscriminately handle two types of noise with the same strategy. In this paper, we argue that the different causes of two types of noise bring up the requirement of different strategies in model architecture. Therefore, we propose the SANTA to handle these two types of noise separately with (1) Memory-smoothed Focal Loss and Entity-aware KNN to relieve the entity ambiguity problem caused by inaccurate annotation, and (2) Boundary Mixup to alleviate decision boundary shifting problem caused by incomplete annotation and a noise-tolerant loss to improve the robustness. Benefiting from our separate tailored strategies, we confirm in the experiment that the two types of noise are well mitigated. SANTA also achieves a new state-of-the-art on five public datasets.Comment: Findings of ACL202

    A Deep Learning Reconstruction Framework for Differential Phase-Contrast Computed Tomography with Incomplete Data

    Full text link
    Differential phase-contrast computed tomography (DPC-CT) is a powerful analysis tool for soft-tissue and low-atomic-number samples. Limited by the implementation conditions, DPC-CT with incomplete projections happens quite often. Conventional reconstruction algorithms are not easy to deal with incomplete data. They are usually involved with complicated parameter selection operations, also sensitive to noise and time-consuming. In this paper, we reported a new deep learning reconstruction framework for incomplete data DPC-CT. It is the tight coupling of the deep learning neural network and DPC-CT reconstruction algorithm in the phase-contrast projection sinogram domain. The estimated result is the complete phase-contrast projection sinogram not the artifacts caused by the incomplete data. After training, this framework is determined and can reconstruct the final DPC-CT images for a given incomplete phase-contrast projection sinogram. Taking the sparse-view DPC-CT as an example, this framework has been validated and demonstrated with synthetic and experimental data sets. Embedded with DPC-CT reconstruction, this framework naturally encapsulates the physical imaging model of DPC-CT systems and is easy to be extended to deal with other challengs. This work is helpful to push the application of the state-of-the-art deep learning theory in the field of DPC-CT
    • …
    corecore