571,667 research outputs found

    Budget-Aware Adapters for Multi-Domain Learning

    Full text link
    Multi-Domain Learning (MDL) refers to the problem of learning a set of models derived from a common deep architecture, each one specialized to perform a task in a certain domain (e.g., photos, sketches, paintings). This paper tackles MDL with a particular interest in obtaining domain-specific models with an adjustable budget in terms of the number of network parameters and computational complexity. Our intuition is that, as in real applications the number of domains and tasks can be very large, an effective MDL approach should not only focus on accuracy but also on having as few parameters as possible. To implement this idea we derive specialized deep models for each domain by adapting a pre-trained architecture but, differently from other methods, we propose a novel strategy to automatically adjust the computational complexity of the network. To this aim, we introduce Budget-Aware Adapters that select the most relevant feature channels to better handle data from a novel domain. Some constraints on the number of active switches are imposed in order to obtain a network respecting the desired complexity budget. Experimentally, we show that our approach leads to recognition accuracy competitive with state-of-the-art approaches but with much lighter networks both in terms of storage and computation.Comment: ICCV 201

    Differentially Private Release and Learning of Threshold Functions

    Full text link
    We prove new upper and lower bounds on the sample complexity of (ϵ,δ)(\epsilon, \delta) differentially private algorithms for releasing approximate answers to threshold functions. A threshold function cxc_x over a totally ordered domain XX evaluates to cx(y)=1c_x(y) = 1 if yxy \le x, and evaluates to 00 otherwise. We give the first nontrivial lower bound for releasing thresholds with (ϵ,δ)(\epsilon,\delta) differential privacy, showing that the task is impossible over an infinite domain XX, and moreover requires sample complexity nΩ(logX)n \ge \Omega(\log^*|X|), which grows with the size of the domain. Inspired by the techniques used to prove this lower bound, we give an algorithm for releasing thresholds with n2(1+o(1))logXn \le 2^{(1+ o(1))\log^*|X|} samples. This improves the previous best upper bound of 8(1+o(1))logX8^{(1 + o(1))\log^*|X|} (Beimel et al., RANDOM '13). Our sample complexity upper and lower bounds also apply to the tasks of learning distributions with respect to Kolmogorov distance and of properly PAC learning thresholds with differential privacy. The lower bound gives the first separation between the sample complexity of properly learning a concept class with (ϵ,δ)(\epsilon,\delta) differential privacy and learning without privacy. For properly learning thresholds in \ell dimensions, this lower bound extends to nΩ(logX)n \ge \Omega(\ell \cdot \log^*|X|). To obtain our results, we give reductions in both directions from releasing and properly learning thresholds and the simpler interior point problem. Given a database DD of elements from XX, the interior point problem asks for an element between the smallest and largest elements in DD. We introduce new recursive constructions for bounding the sample complexity of the interior point problem, as well as further reductions and techniques for proving impossibility results for other basic problems in differential privacy.Comment: 43 page

    Gradient-free Policy Architecture Search and Adaptation

    Full text link
    We develop a method for policy architecture search and adaptation via gradient-free optimization which can learn to perform autonomous driving tasks. By learning from both demonstration and environmental reward we develop a model that can learn with relatively few early catastrophic failures. We first learn an architecture of appropriate complexity to perceive aspects of world state relevant to the expert demonstration, and then mitigate the effect of domain-shift during deployment by adapting a policy demonstrated in a source domain to rewards obtained in a target environment. We show that our approach allows safer learning than baseline methods, offering a reduced cumulative crash metric over the agent's lifetime as it learns to drive in a realistic simulated environment.Comment: Accepted in Conference on Robot Learning, 201

    Towards learning domain-independent planning heuristics

    Full text link
    Automated planning remains one of the most general paradigms in Artificial Intelligence, providing means of solving problems coming from a wide variety of domains. One of the key factors restricting the applicability of planning is its computational complexity resulting from exponentially large search spaces. Heuristic approaches are necessary to solve all but the simplest problems. In this work, we explore the possibility of obtaining domain-independent heuristic functions using machine learning. This is a part of a wider research program whose objective is to improve practical applicability of planning in systems for which the planning domains evolve at run time. The challenge is therefore the learning of (corrections of) domain-independent heuristics that can be reused across different planning domains.Comment: Accepted for the IJCAI-17 Workshop on Architectures for Generality and Autonom
    corecore