1,700 research outputs found

    DepQBF 6.0: A Search-Based QBF Solver Beyond Traditional QCDCL

    Full text link
    We present the latest major release version 6.0 of the quantified Boolean formula (QBF) solver DepQBF, which is based on QCDCL. QCDCL is an extension of the conflict-driven clause learning (CDCL) paradigm implemented in state of the art propositional satisfiability (SAT) solvers. The Q-resolution calculus (QRES) is a QBF proof system which underlies QCDCL. QCDCL solvers can produce QRES proofs of QBFs in prenex conjunctive normal form (PCNF) as a byproduct of the solving process. In contrast to traditional QCDCL based on QRES, DepQBF 6.0 implements a variant of QCDCL which is based on a generalization of QRES. This generalization is due to a set of additional axioms and leaves the original Q-resolution rules unchanged. The generalization of QRES enables QCDCL to potentially produce exponentially shorter proofs than the traditional variant. We present an overview of the features implemented in DepQBF and report on experimental results which demonstrate the effectiveness of generalized QRES in QCDCL.Comment: 12 pages + appendix; to appear in the proceedings of CADE-26, LNCS, Springer, 201

    The Connectivity of Boolean Satisfiability: Dichotomies for Formulas and Circuits

    Full text link
    For Boolean satisfiability problems, the structure of the solution space is characterized by the solution graph, where the vertices are the solutions, and two solutions are connected iff they differ in exactly one variable. In 2006, Gopalan et al. studied connectivity properties of the solution graph and related complexity issues for CSPs, motivated mainly by research on satisfiability algorithms and the satisfiability threshold. They proved dichotomies for the diameter of connected components and for the complexity of the st-connectivity question, and conjectured a trichotomy for the connectivity question. Recently, we were able to establish the trichotomy [arXiv:1312.4524]. Here, we consider connectivity issues of satisfiability problems defined by Boolean circuits and propositional formulas that use gates, resp. connectives, from a fixed set of Boolean functions. We obtain dichotomies for the diameter and the two connectivity problems: on one side, the diameter is linear in the number of variables, and both problems are in P, while on the other side, the diameter can be exponential, and the problems are PSPACE-complete. For partially quantified formulas, we show an analogous dichotomy.Comment: 20 pages, several improvement

    Evaluating QBF Solvers: Quantifier Alternations Matter

    Full text link
    We present an experimental study of the effects of quantifier alternations on the evaluation of quantified Boolean formula (QBF) solvers. The number of quantifier alternations in a QBF in prenex conjunctive normal form (PCNF) is directly related to the theoretical hardness of the respective QBF satisfiability problem in the polynomial hierarchy. We show empirically that the performance of solvers based on different solving paradigms substantially varies depending on the numbers of alternations in PCNFs. In related theoretical work, quantifier alternations have become the focus of understanding the strengths and weaknesses of various QBF proof systems implemented in solvers. Our results motivate the development of methods to evaluate orthogonal solving paradigms by taking quantifier alternations into account. This is necessary to showcase the broad range of existing QBF solving paradigms for practical QBF applications. Moreover, we highlight the potential of combining different approaches and QBF proof systems in solvers.Comment: preprint of a paper to be published at CP 2018, LNCS, Springer, including appendi
    corecore