16,615 research outputs found

    Learning for Graph Matching and Related Combinatorial Optimization Problems

    Get PDF

    On Correcting Inputs: Inverse Optimization for Online Structured Prediction

    Get PDF
    Algorithm designers typically assume that the input data is correct, and then proceed to find "optimal" or "sub-optimal" solutions using this input data. However this assumption of correct data does not always hold in practice, especially in the context of online learning systems where the objective is to learn appropriate feature weights given some training samples. Such scenarios necessitate the study of inverse optimization problems where one is given an input instance as well as a desired output and the task is to adjust the input data so that the given output is indeed optimal. Motivated by learning structured prediction models, in this paper we consider inverse optimization with a margin, i.e., we require the given output to be better than all other feasible outputs by a desired margin. We consider such inverse optimization problems for maximum weight matroid basis, matroid intersection, perfect matchings, minimum cost maximum flows, and shortest paths and derive the first known results for such problems with a non-zero margin. The effectiveness of these algorithmic approaches to online learning for structured prediction is also discussed.Comment: Conference version to appear in FSTTCS, 201

    Combinatorial Network Optimization with Unknown Variables: Multi-Armed Bandits with Linear Rewards

    Full text link
    In the classic multi-armed bandits problem, the goal is to have a policy for dynamically operating arms that each yield stochastic rewards with unknown means. The key metric of interest is regret, defined as the gap between the expected total reward accumulated by an omniscient player that knows the reward means for each arm, and the expected total reward accumulated by the given policy. The policies presented in prior work have storage, computation and regret all growing linearly with the number of arms, which is not scalable when the number of arms is large. We consider in this work a broad class of multi-armed bandits with dependent arms that yield rewards as a linear combination of a set of unknown parameters. For this general framework, we present efficient policies that are shown to achieve regret that grows logarithmically with time, and polynomially in the number of unknown parameters (even though the number of dependent arms may grow exponentially). Furthermore, these policies only require storage that grows linearly in the number of unknown parameters. We show that this generalization is broadly applicable and useful for many interesting tasks in networks that can be formulated as tractable combinatorial optimization problems with linear objective functions, such as maximum weight matching, shortest path, and minimum spanning tree computations

    Melding the Data-Decisions Pipeline: Decision-Focused Learning for Combinatorial Optimization

    Full text link
    Creating impact in real-world settings requires artificial intelligence techniques to span the full pipeline from data, to predictive models, to decisions. These components are typically approached separately: a machine learning model is first trained via a measure of predictive accuracy, and then its predictions are used as input into an optimization algorithm which produces a decision. However, the loss function used to train the model may easily be misaligned with the end goal, which is to make the best decisions possible. Hand-tuning the loss function to align with optimization is a difficult and error-prone process (which is often skipped entirely). We focus on combinatorial optimization problems and introduce a general framework for decision-focused learning, where the machine learning model is directly trained in conjunction with the optimization algorithm to produce high-quality decisions. Technically, our contribution is a means of integrating common classes of discrete optimization problems into deep learning or other predictive models, which are typically trained via gradient descent. The main idea is to use a continuous relaxation of the discrete problem to propagate gradients through the optimization procedure. We instantiate this framework for two broad classes of combinatorial problems: linear programs and submodular maximization. Experimental results across a variety of domains show that decision-focused learning often leads to improved optimization performance compared to traditional methods. We find that standard measures of accuracy are not a reliable proxy for a predictive model's utility in optimization, and our method's ability to specify the true goal as the model's training objective yields substantial dividends across a range of decision problems.Comment: Full version of paper accepted at AAAI 201

    Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

    Full text link
    We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [53]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the 'curvature' of the submodular function, and provide lower and upper bounds that refine and improve previous results [3, 16, 18, 52]. Our proof techniques are fairly generic. We either use a black-box transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [7, 55], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.Comment: 21 pages. A shorter version appeared in Advances of NIPS-201

    Matroid Bandits: Fast Combinatorial Optimization with Learning

    Full text link
    A matroid is a notion of independence in combinatorial optimization which is closely related to computational efficiency. In particular, it is well known that the maximum of a constrained modular function can be found greedily if and only if the constraints are associated with a matroid. In this paper, we bring together the ideas of bandits and matroids, and propose a new class of combinatorial bandits, matroid bandits. The objective in these problems is to learn how to maximize a modular function on a matroid. This function is stochastic and initially unknown. We propose a practical algorithm for solving our problem, Optimistic Matroid Maximization (OMM); and prove two upper bounds, gap-dependent and gap-free, on its regret. Both bounds are sublinear in time and at most linear in all other quantities of interest. The gap-dependent upper bound is tight and we prove a matching lower bound on a partition matroid bandit. Finally, we evaluate our method on three real-world problems and show that it is practical
    • …
    corecore