116 research outputs found

    The Effect of Narrow-Band Transmission on Recognition of Paralinguistic Information From Human Vocalizations

    No full text
    Practically, no knowledge exists on the effects of speech coding and recognition for narrow-band transmission of speech signals within certain frequency ranges especially in relation to the recognition of paralinguistic cues in speech. We thus investigated the impact of narrow-band standard speech coders on the machine-based classification of affective vocalizations and clinical vocal recordings. In addition, we analyzed the effect of speech low-pass filtering by a set of different cut-off frequencies, either chosen as static values in the 0.5-5-kHz range or given dynamically by different upper limits from the first five speech formants (F1-F5). Speech coding and recognition were tested, first, according to short-term speaker states by using affective vocalizations as given by the Geneva Multimodal Emotion Portrayals. Second, in relation to long-term speaker traits, we tested vocal recording from clinical populations involving speech impairments as found in the Child Pathological Speech Database. We employ a large acoustic feature space derived from the Interspeech Computational Paralinguistics Challenge. Besides analysis of the sheer corruption outcome, we analyzed the potential of matched and multicondition training as opposed to miss-matched condition. In the results, first, multicondition and matched-condition training significantly increase performances as opposed to mismatched condition. Second, downgrades in classification accuracy occur, however, only at comparably severe levels of low-pass filtering. The downgrades especially appear for multi-categorical rather than for binary decisions. These can be dealt with reasonably by the alluded strategies

    Contributions on Automatic Recognition of Faces using Local Texture Features

    Full text link
    Uno de los temas más destacados del área de visión artifical se deriva del análisis facial automático. En particular, la detección precisa de caras humanas y el análisis biométrico de las mismas son problemas que han generado especial interés debido a la gran cantidad de aplicaciones que actualmente hacen uso de estos mecnismos. En esta Tesis Doctoral se analizan por separado los problemas relacionados con detección precisa de caras basada en la localización de los ojos y el reconomcimiento facial a partir de la extracción de características locales de textura. Los algoritmos desarrollados abordan el problema de la extracción de la identidad a partir de una imagen de cara ( en vista frontal o semi-frontal), para escenarios parcialmente controlados. El objetivo es desarrollar algoritmos robustos y que puedan incorpararse fácilmente a aplicaciones reales, tales como seguridad avanzada en banca o la definición de estrategias comerciales aplicadas al sector de retail. Respecto a la extracción de texturas locales, se ha realizado un análisis exhaustivo de los descriptores más extendidos; se ha puesto especial énfasis en el estudio de los Histogramas de Grandientes Orientados (HOG features). En representaciones normalizadas de la cara, estos descriptores ofrecen información discriminativa de los elementos faciales (ojos, boca, etc.), siendo robustas a variaciones en la iluminación y pequeños desplazamientos. Se han elegido diferentes algoritmos de clasificación para realizar la detección y el reconocimiento de caras, todos basados en una estrategia de sistemas supervisados. En particular, para la localización de ojos se ha utilizado clasificadores boosting y Máquinas de Soporte Vectorial (SVM) sobre descriptores HOG. En el caso de reconocimiento de caras, se ha desarrollado un nuevo algoritmo, HOG-EBGM (HOG sobre Elastic Bunch Graph Matching). Dada la imagen de una cara, el esquema seguido por este algoritmo se puede resumir en pocos pasos: en una primera etapa se extMonzó Ferrer, D. (2012). Contributions on Automatic Recognition of Faces using Local Texture Features [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16698Palanci

    Latent Dependency Mining for Solving Regression Problems in Computer Vision

    Get PDF
    PhDRegression-based frameworks, learning the direct mapping between low-level imagery features and vector/scalar-formed continuous labels, have been widely exploited in computer vision, e.g. in crowd counting, age estimation and human pose estimation. In the last decade, many efforts have been dedicated by researchers in computer vision for better regression fitting. Nevertheless, solving these computer vision problems with regression frameworks remained a formidable challenge due to 1) feature variation and 2) imbalance and sparse data. On one hand, large feature variation can be caused by the changes of extrinsic conditions (i.e. images are taken under different lighting condition and viewing angles) and also intrinsic conditions (e.g. different aging process of different persons in age estimation and inter-object occlusion in crowd density estimation). On the other hand, imbalanced and sparse data distributions can also have an important effect on regression performance. Apparently, these two challenges existing in regression learning are related in the sense that the feature inconsistency problem is compounded by sparse and imbalanced training data and vice versa, and they need be tackled jointly in modelling and explicitly in representation. This thesis firstly mines an intermediary feature representation consisting of concatenating spatially localised feature for sharing the information from neighbouring localised cells in the frames. This thesis secondly introduces the cumulative attribute concept constructed for learning a regression model by exploiting the latent cumulative dependent nature of label space in regression, in the application of facial age and crowd density estimation. The thesis thirdly demonstrates the effectiveness of a discriminative structured-output regression framework to learn the inherent latent correlation between each element of output variables in the application of 2D human upper body pose estimation. The effectiveness of the proposed regression frameworks for crowd counting, age estimation, and human pose estimation is validated with public benchmarks

    Irish Machine Vision and Image Processing Conference Proceedings 2017

    Get PDF

    Improving Deep Representation Learning with Complex and Multimodal Data.

    Full text link
    Representation learning has emerged as a way to learn meaningful representation from data and made a breakthrough in many applications including visual object recognition, speech recognition, and text understanding. However, learning representation from complex high-dimensional sensory data is challenging since there exist many irrelevant factors of variation (e.g., data transformation, random noise). On the other hand, to build an end-to-end prediction system for structured output variables, one needs to incorporate probabilistic inference to properly model a mapping from single input to possible configurations of output variables. This thesis addresses limitations of current representation learning in two parts. The first part discusses efficient learning algorithms of invariant representation based on restricted Boltzmann machines (RBMs). Pointing out the difficulty of learning, we develop an efficient initialization method for sparse and convolutional RBMs. On top of that, we develop variants of RBM that learn representations invariant to data transformations such as translation, rotation, or scale variation by pooling the filter responses of input data after a transformation, or to irrelevant patterns such as random or structured noise, by jointly performing feature selection and feature learning. We demonstrate improved performance on visual object recognition and weakly supervised foreground object segmentation. The second part discusses conditional graphical models and learning frameworks for structured output variables using deep generative models as prior. For example, we combine the best properties of the CRF and the RBM to enforce both local and global (e.g., object shape) consistencies for visual object segmentation. Furthermore, we develop a deep conditional generative model of structured output variables, which is an end-to-end system trainable by backpropagation. We demonstrate the importance of global prior and probabilistic inference for visual object segmentation. Second, we develop a novel multimodal learning framework by casting the problem into structured output representation learning problems, where the output is one data modality to be predicted from the other modalities, and vice versa. We explain as to how our method could be more effective than maximum likelihood learning and demonstrate the state-of-the-art performance on visual-text and visual-only recognition tasks.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113549/1/kihyuks_1.pd
    corecore