3,513 research outputs found

    Histogram of gradients of Time-Frequency Representations for Audio scene detection

    Full text link
    This paper addresses the problem of audio scenes classification and contributes to the state of the art by proposing a novel feature. We build this feature by considering histogram of gradients (HOG) of time-frequency representation of an audio scene. Contrarily to classical audio features like MFCC, we make the hypothesis that histogram of gradients are able to encode some relevant informations in a time-frequency {representation:} namely, the local direction of variation (in time and frequency) of the signal spectral power. In addition, in order to gain more invariance and robustness, histogram of gradients are locally pooled. We have evaluated the relevance of {the novel feature} by comparing its performances with state-of-the-art competitors, on several datasets, including a novel one that we provide, as part of our contribution. This dataset, that we make publicly available, involves 1919 classes and contains about 900900 minutes of audio scene recording. We thus believe that it may be the next standard dataset for evaluating audio scene classification algorithms. Our comparison results clearly show that our HOG-based features outperform its competitor

    Learning Audio Sequence Representations for Acoustic Event Classification

    Full text link
    Acoustic Event Classification (AEC) has become a significant task for machines to perceive the surrounding auditory scene. However, extracting effective representations that capture the underlying characteristics of the acoustic events is still challenging. Previous methods mainly focused on designing the audio features in a 'hand-crafted' manner. Interestingly, data-learnt features have been recently reported to show better performance. Up to now, these were only considered on the frame-level. In this paper, we propose an unsupervised learning framework to learn a vector representation of an audio sequence for AEC. This framework consists of a Recurrent Neural Network (RNN) encoder and a RNN decoder, which respectively transforms the variable-length audio sequence into a fixed-length vector and reconstructs the input sequence on the generated vector. After training the encoder-decoder, we feed the audio sequences to the encoder and then take the learnt vectors as the audio sequence representations. Compared with previous methods, the proposed method can not only deal with the problem of arbitrary-lengths of audio streams, but also learn the salient information of the sequence. Extensive evaluation on a large-size acoustic event database is performed, and the empirical results demonstrate that the learnt audio sequence representation yields a significant performance improvement by a large margin compared with other state-of-the-art hand-crafted sequence features for AEC

    A Compact and Discriminative Feature Based on Auditory Summary Statistics for Acoustic Scene Classification

    Full text link
    One of the biggest challenges of acoustic scene classification (ASC) is to find proper features to better represent and characterize environmental sounds. Environmental sounds generally involve more sound sources while exhibiting less structure in temporal spectral representations. However, the background of an acoustic scene exhibits temporal homogeneity in acoustic properties, suggesting it could be characterized by distribution statistics rather than temporal details. In this work, we investigated using auditory summary statistics as the feature for ASC tasks. The inspiration comes from a recent neuroscience study, which shows the human auditory system tends to perceive sound textures through time-averaged statistics. Based on these statistics, we further proposed to use linear discriminant analysis to eliminate redundancies among these statistics while keeping the discriminative information, providing an extreme com-pact representation for acoustic scenes. Experimental results show the outstanding performance of the proposed feature over the conventional handcrafted features.Comment: Accepted as a conference paper of Interspeech 201

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    SubSpectralNet - Using Sub-Spectrogram based Convolutional Neural Networks for Acoustic Scene Classification

    Full text link
    Acoustic Scene Classification (ASC) is one of the core research problems in the field of Computational Sound Scene Analysis. In this work, we present SubSpectralNet, a novel model which captures discriminative features by incorporating frequency band-level differences to model soundscapes. Using mel-spectrograms, we propose the idea of using band-wise crops of the input time-frequency representations and train a convolutional neural network (CNN) on the same. We also propose a modification in the training method for more efficient learning of the CNN models. We first give a motivation for using sub-spectrograms by giving intuitive and statistical analyses and finally we develop a sub-spectrogram based CNN architecture for ASC. The system is evaluated on the public ASC development dataset provided for the "Detection and Classification of Acoustic Scenes and Events" (DCASE) 2018 Challenge. Our best model achieves an improvement of +14% in terms of classification accuracy with respect to the DCASE 2018 baseline system. Code and figures are available at https://github.com/ssrp/SubSpectralNetComment: Accepted to IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 201

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure
    corecore