6,641 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Monte Carlo Bayesian Reinforcement Learning

    Full text link
    Bayesian reinforcement learning (BRL) encodes prior knowledge of the world in a model and represents uncertainty in model parameters by maintaining a probability distribution over them. This paper presents Monte Carlo BRL (MC-BRL), a simple and general approach to BRL. MC-BRL samples a priori a finite set of hypotheses for the model parameter values and forms a discrete partially observable Markov decision process (POMDP) whose state space is a cross product of the state space for the reinforcement learning task and the sampled model parameter space. The POMDP does not require conjugate distributions for belief representation, as earlier works do, and can be solved relatively easily with point-based approximation algorithms. MC-BRL naturally handles both fully and partially observable worlds. Theoretical and experimental results show that the discrete POMDP approximates the underlying BRL task well with guaranteed performance.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Safe Multi-Agent Interaction through Robust Control Barrier Functions with Learned Uncertainties

    Get PDF
    Robots operating in real world settings must navigate and maintain safety while interacting with many heterogeneous agents and obstacles. Multi-Agent Control Barrier Functions (CBF) have emerged as a computationally efficient tool to guarantee safety in multi-agent environments, but they assume perfect knowledge of both the robot dynamics and other agents' dynamics. While knowledge of the robot's dynamics might be reasonably well known, the heterogeneity of agents in real-world environments means there will always be considerable uncertainty in our prediction of other agents' dynamics. This work aims to learn high-confidence bounds for these dynamic uncertainties using Matrix-Variate Gaussian Process models, and incorporates them into a robust multi-agent CBF framework. We transform the resulting min-max robust CBF into a quadratic program, which can be efficiently solved in real time. We verify via simulation results that the nominal multi-agent CBF is often violated during agent interactions, whereas our robust formulation maintains safety with a much higher probability and adapts to learned uncertainties
    • …
    corecore