17,052 research outputs found

    Large-scale Isolated Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper proposes three simple, compact yet effective representations of depth sequences, referred to respectively as Dynamic Depth Images (DDI), Dynamic Depth Normal Images (DDNI) and Dynamic Depth Motion Normal Images (DDMNI). These dynamic images are constructed from a sequence of depth maps using bidirectional rank pooling to effectively capture the spatial-temporal information. Such image-based representations enable us to fine-tune the existing ConvNets models trained on image data for classification of depth sequences, without introducing large parameters to learn. Upon the proposed representations, a convolutional Neural networks (ConvNets) based method is developed for gesture recognition and evaluated on the Large-scale Isolated Gesture Recognition at the ChaLearn Looking at People (LAP) challenge 2016. The method achieved 55.57\% classification accuracy and ranked 2nd2^{nd} place in this challenge but was very close to the best performance even though we only used depth data.Comment: arXiv admin note: text overlap with arXiv:1608.0633

    Relaxed Spatio-Temporal Deep Feature Aggregation for Real-Fake Expression Prediction

    Get PDF
    Frame-level visual features are generally aggregated in time with the techniques such as LSTM, Fisher Vectors, NetVLAD etc. to produce a robust video-level representation. We here introduce a learnable aggregation technique whose primary objective is to retain short-time temporal structure between frame-level features and their spatial interdependencies in the representation. Also, it can be easily adapted to the cases where there have very scarce training samples. We evaluate the method on a real-fake expression prediction dataset to demonstrate its superiority. Our method obtains 65% score on the test dataset in the official MAP evaluation and there is only one misclassified decision with the best reported result in the Chalearn Challenge (i.e. 66:7%) . Lastly, we believe that this method can be extended to different problems such as action/event recognition in future.Comment: Submitted to International Conference on Computer Vision Workshop

    Automatic Analysis of Facial Expressions Based on Deep Covariance Trajectories

    Get PDF
    In this paper, we propose a new approach for facial expression recognition using deep covariance descriptors. The solution is based on the idea of encoding local and global Deep Convolutional Neural Network (DCNN) features extracted from still images, in compact local and global covariance descriptors. The space geometry of the covariance matrices is that of Symmetric Positive Definite (SPD) matrices. By conducting the classification of static facial expressions using Support Vector Machine (SVM) with a valid Gaussian kernel on the SPD manifold, we show that deep covariance descriptors are more effective than the standard classification with fully connected layers and softmax. Besides, we propose a completely new and original solution to model the temporal dynamic of facial expressions as deep trajectories on the SPD manifold. As an extension of the classification pipeline of covariance descriptors, we apply SVM with valid positive definite kernels derived from global alignment for deep covariance trajectories classification. By performing extensive experiments on the Oulu-CASIA, CK+, and SFEW datasets, we show that both the proposed static and dynamic approaches achieve state-of-the-art performance for facial expression recognition outperforming many recent approaches.Comment: A preliminary version of this work appeared in "Otberdout N, Kacem A, Daoudi M, Ballihi L, Berretti S. Deep Covariance Descriptors for Facial Expression Recognition, in British Machine Vision Conference 2018, BMVC 2018, Northumbria University, Newcastle, UK, September 3-6, 2018. ; 2018 :159." arXiv admin note: substantial text overlap with arXiv:1805.0386

    Analyzing Input and Output Representations for Speech-Driven Gesture Generation

    Full text link
    This paper presents a novel framework for automatic speech-driven gesture generation, applicable to human-agent interaction including both virtual agents and robots. Specifically, we extend recent deep-learning-based, data-driven methods for speech-driven gesture generation by incorporating representation learning. Our model takes speech as input and produces gestures as output, in the form of a sequence of 3D coordinates. Our approach consists of two steps. First, we learn a lower-dimensional representation of human motion using a denoising autoencoder neural network, consisting of a motion encoder MotionE and a motion decoder MotionD. The learned representation preserves the most important aspects of the human pose variation while removing less relevant variation. Second, we train a novel encoder network SpeechE to map from speech to a corresponding motion representation with reduced dimensionality. At test time, the speech encoder and the motion decoder networks are combined: SpeechE predicts motion representations based on a given speech signal and MotionD then decodes these representations to produce motion sequences. We evaluate different representation sizes in order to find the most effective dimensionality for the representation. We also evaluate the effects of using different speech features as input to the model. We find that mel-frequency cepstral coefficients (MFCCs), alone or combined with prosodic features, perform the best. The results of a subsequent user study confirm the benefits of the representation learning.Comment: Accepted at IVA '19. Shorter version published at AAMAS '19. The code is available at https://github.com/GestureGeneration/Speech_driven_gesture_generation_with_autoencode

    Large-scale Continuous Gesture Recognition Using Convolutional Neural Networks

    Full text link
    This paper addresses the problem of continuous gesture recognition from sequences of depth maps using convolutional neutral networks (ConvNets). The proposed method first segments individual gestures from a depth sequence based on quantity of movement (QOM). For each segmented gesture, an Improved Depth Motion Map (IDMM), which converts the depth sequence into one image, is constructed and fed to a ConvNet for recognition. The IDMM effectively encodes both spatial and temporal information and allows the fine-tuning with existing ConvNet models for classification without introducing millions of parameters to learn. The proposed method is evaluated on the Large-scale Continuous Gesture Recognition of the ChaLearn Looking at People (LAP) challenge 2016. It achieved the performance of 0.2655 (Mean Jaccard Index) and ranked 3rd3^{rd} place in this challenge
    • …
    corecore