1,558 research outputs found

    Classification and Geometry of General Perceptual Manifolds

    Get PDF
    Perceptual manifolds arise when a neural population responds to an ensemble of sensory signals associated with different physical features (e.g., orientation, pose, scale, location, and intensity) of the same perceptual object. Object recognition and discrimination requires classifying the manifolds in a manner that is insensitive to variability within a manifold. How neuronal systems give rise to invariant object classification and recognition is a fundamental problem in brain theory as well as in machine learning. Here we study the ability of a readout network to classify objects from their perceptual manifold representations. We develop a statistical mechanical theory for the linear classification of manifolds with arbitrary geometry revealing a remarkable relation to the mathematics of conic decomposition. Novel geometrical measures of manifold radius and manifold dimension are introduced which can explain the classification capacity for manifolds of various geometries. The general theory is demonstrated on a number of representative manifolds, including L2 ellipsoids prototypical of strictly convex manifolds, L1 balls representing polytopes consisting of finite sample points, and orientation manifolds which arise from neurons tuned to respond to a continuous angle variable, such as object orientation. The effects of label sparsity on the classification capacity of manifolds are elucidated, revealing a scaling relation between label sparsity and manifold radius. Theoretical predictions are corroborated by numerical simulations using recently developed algorithms to compute maximum margin solutions for manifold dichotomies. Our theory and its extensions provide a powerful and rich framework for applying statistical mechanics of linear classification to data arising from neuronal responses to object stimuli, as well as to artificial deep networks trained for object recognition tasks.Comment: 24 pages, 12 figures, Supplementary Material

    Analysis of approximate nearest neighbor searching with clustered point sets

    Full text link
    We present an empirical analysis of data structures for approximate nearest neighbor searching. We compare the well-known optimized kd-tree splitting method against two alternative splitting methods. The first, called the sliding-midpoint method, which attempts to balance the goals of producing subdivision cells of bounded aspect ratio, while not producing any empty cells. The second, called the minimum-ambiguity method is a query-based approach. In addition to the data points, it is also given a training set of query points for preprocessing. It employs a simple greedy algorithm to select the splitting plane that minimizes the average amount of ambiguity in the choice of the nearest neighbor for the training points. We provide an empirical analysis comparing these two methods against the optimized kd-tree construction for a number of synthetically generated data and query sets. We demonstrate that for clustered data and query sets, these algorithms can provide significant improvements over the standard kd-tree construction for approximate nearest neighbor searching.Comment: 20 pages, 8 figures. Presented at ALENEX '99, Baltimore, MD, Jan 15-16, 199

    Symmetric confidence regions and confidence intervals for normal map formulations of stochastic variational inequalities

    Get PDF
    Stochastic variational inequalities (SVI) model a large class of equilibrium problems subject to data uncertainty, and are closely related to stochastic optimization problems. The SVI solution is usually estimated by a solution to a sample average approximation (SAA) problem. This paper considers the normal map formulation of an SVI, and proposes a method to build asymptotically exact confidence regions and confidence intervals for the solution of the normal map formulation, based on the asymptotic distribution of SAA solutions. The confidence regions are single ellipsoids with high probability. We also discuss the computation of simultaneous and individual confidence intervals

    Accelerated Parameter Estimation with DALEχ\chi

    Get PDF
    We consider methods for improving the estimation of constraints on a high-dimensional parameter space with a computationally expensive likelihood function. In such cases Markov chain Monte Carlo (MCMC) can take a long time to converge and concentrates on finding the maxima rather than the often-desired confidence contours for accurate error estimation. We employ DALEχ\chi (Direct Analysis of Limits via the Exterior of χ2\chi^2) for determining confidence contours by minimizing a cost function parametrized to incentivize points in parameter space which are both on the confidence limit and far from previously sampled points. We compare DALEχ\chi to the nested sampling algorithm implemented in MultiNest on a toy likelihood function that is highly non-Gaussian and non-linear in the mapping between parameter values and χ2\chi^2. We find that in high-dimensional cases DALEχ\chi finds the same confidence limit as MultiNest using roughly an order of magnitude fewer evaluations of the likelihood function. DALEχ\chi is open-source and available at https://github.com/danielsf/Dalex.git
    corecore