4,057 research outputs found

    Possibilities and Challenges of Using Educational Cheminformatics for STEM Education : A SWOT Analysis of a Molecular Visualization Engineering Project

    Get PDF
    This perspective paper analyses the possibilities and challenges of using cheminformatics as a context for STEM education. The objective is to produce theoretical insights through a SWOT analysis of an authentic educational cheminformatics project where future chemistry teachers engineered a physical 3D model using cheminformatics software and a 3D printer. In this article, engineering is considered as the connective STEM component binding technology (cheminformatics software and databases), science (molecular visualizations), and mathematics (graph theory) together in a pedagogically meaningful whole. The main conclusion of the analysis is that cheminformatics offers great possibilities for STEM education. It is a solution-centered research field that produces concrete artifacts such as visualizations, software, and databases. This is well-suited to STEM education, enabling an engineering-based approach that ensures students’ active and creative roles. The main challenge is a high content knowledge demand, derived from the multidisciplinary nature of cheminformatics. This challenge can be solved via training and collaborative learning environment design. Although the work with educational cheminformatics is still in its infancy, it seems a highly promising context for supporting chemistry learning via STEM education.Peer reviewe

    11th German Conference on Chemoinformatics (GCC 2015) : Fulda, Germany. 8-10 November 2015.

    Get PDF

    TeachOpenCADD: a teaching platform for computer-aided drug design using open source packages and data

    Get PDF
    Owing to the increase in freely available software and data for cheminformatics and structural bioinformatics, research for computer-aided drug design (CADD) is more and more built on modular, reproducible, and easy-to-share pipelines. While documentation for such tools is available, there are only a few freely accessible examples that teach the underlying concepts focused on CADD, especially addressing users new to the field. Here, we present TeachOpenCADD, a teaching platform developed by students for students, using open source compound and protein data as well as basic and CADD-related Python packages. We provide interactive Jupyter notebooks for central CADD topics, integrating theoretical background and practical code. TeachOpenCADD is freely available on GitHub: https://github.com/volkamerlab/TeachOpenCAD

    In silico generation of novel, drug-like chemical matter using the LSTM neural network

    Full text link
    The exploration of novel chemical spaces is one of the most important tasks of cheminformatics when supporting the drug discovery process. Properly designed and trained deep neural networks can provide a viable alternative to brute-force de novo approaches or various other machine-learning techniques for generating novel drug-like molecules. In this article we present a method to generate molecules using a long short-term memory (LSTM) neural network and provide an analysis of the results, including a virtual screening test. Using the network one million drug-like molecules were generated in 2 hours. The molecules are novel, diverse (contain numerous novel chemotypes), have good physicochemical properties and have good synthetic accessibility, even though these qualities were not specific constraints. Although novel, their structural features and functional groups remain closely within the drug-like space defined by the bioactive molecules from ChEMBL. Virtual screening using the profile QSAR approach confirms that the potential of these novel molecules to show bioactivity is comparable to the ChEMBL set from which they were derived. The molecule generator written in Python used in this study is available on request.Comment: in this version fixed some reference number

    Kernel learning for ligand-based virtual screening: discovery of a new PPARgamma agonist

    Get PDF
    Poster presentation at 5th German Conference on Cheminformatics: 23. CIC-Workshop Goslar, Germany. 8-10 November 2009 We demonstrate the theoretical and practical application of modern kernel-based machine learning methods to ligand-based virtual screening by successful prospective screening for novel agonists of the peroxisome proliferator-activated receptor gamma (PPARgamma) [1]. PPARgamma is a nuclear receptor involved in lipid and glucose metabolism, and related to type-2 diabetes and dyslipidemia. Applied methods included a graph kernel designed for molecular similarity analysis [2], kernel principle component analysis [3], multiple kernel learning [4], and, Gaussian process regression [5]. In the machine learning approach to ligand-based virtual screening, one uses the similarity principle [6] to identify potentially active compounds based on their similarity to known reference ligands. Kernel-based machine learning [7] uses the "kernel trick", a systematic approach to the derivation of non-linear versions of linear algorithms like separating hyperplanes and regression. Prerequisites for kernel learning are similarity measures with the mathematical property of positive semidefiniteness (kernels). The iterative similarity optimal assignment graph kernel (ISOAK) [2] is defined directly on the annotated structure graph, and was designed specifically for the comparison of small molecules. In our virtual screening study, its use improved results, e.g., in principle component analysis-based visualization and Gaussian process regression. Following a thorough retrospective validation using a data set of 176 published PPARgamma agonists [8], we screened a vendor library for novel agonists. Subsequent testing of 15 compounds in a cell-based transactivation assay [9] yielded four active compounds. The most interesting hit, a natural product derivative with cyclobutane scaffold, is a full selective PPARgamma agonist (EC50 = 10 ± 0.2 microM, inactive on PPARalpha and PPARbeta/delta at 10 microM). We demonstrate how the interplay of several modern kernel-based machine learning approaches can successfully improve ligand-based virtual screening results
    corecore