4,422 research outputs found

    An analog feedback associative memory

    Get PDF
    A method for the storage of analog vectors, i.e., vectors whose components are real-valued, is developed for the Hopfield continuous-time network. An important requirement is that each memory vector has to be an asymptotically stable (i.e. attractive) equilibrium of the network. Some of the limitations imposed by the continuous Hopfield model on the set of vectors that can be stored are pointed out. These limitations can be relieved by choosing a network containing visible as well as hidden units. An architecture consisting of several hidden layers and a visible layer, connected in a circular fashion, is considered. It is proved that the two-layer case is guaranteed to store any number of given analog vectors provided their number does not exceed 1 + the number of neurons in the hidden layer. A learning algorithm that correctly adjusts the locations of the equilibria and guarantees their asymptotic stability is developed. Simulation results confirm the effectiveness of the approach

    Neural Network Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    Neural Networks: Implementations and Applications

    Get PDF
    Artificial neural networks, also called neural networks, have been used successfully in many fields including engineering, science and business. This paper presents the implementation of several neural network simulators and their applications in character recognition and other engineering area

    The VC-Dimension versus the Statistical Capacity of Multilayer Networks

    Get PDF
    A general relationship is developed between the VC-dimension and the statistical lower epsilon-capacity which shows that the VC-dimension can be lower bounded (in order) by the statistical lower epsilon-capacity of a network trained with random samples. This relationship explains quantitatively how generalization takes place after memorization, and relates the concept of generalization (consistency) with the capacity of the optimal classifier over a class of classifiers with the same structure and the capacity of the Bayesian classifier. Furthermore, it provides a general methodology to evaluate a lower bound for the VC-dimension of feedforward multilayer neural networks. This general methodology is applied to two types of networks which are important for hardware implementations: two layer (N - 2L - 1) networks with binary weights, integer thresholds for the hidden units and zero threshold for the output unit, and a single neuron ((N - 1) networks) with binary weigths and a zero threshold. Specifically, we obtain O(W/lnL)≤ d_2 ≤ O(W), and d_1 ~ O(N). Here W is the total number of weights of the (N - 2L - 1) networks. d_1 and d_2 represent the VC-dimensions for the (N - 1) and (N - 2L - 1) networks respectively

    Neural networks in control engineering

    Get PDF
    The purpose of this thesis is to investigate the viability of integrating neural networks into control structures. These networks are an attempt to create artificial intelligent systems with the ability to learn and remember. They mathematically model the biological structure of the brain and consist of a large number of simple interconnected processing units emulating brain cells. Due to the highly parallel and consequently computationally expensive nature of these networks, intensive research in this field has only become feasible due to the availability of powerful personal computers in recent years. Consequently, attempts at exploiting the attractive learning and nonlinear optimization characteristics of neural networks have been made in most fields of science and engineering, including process control. The control structures suggested in the literature for the inclusion of neural networks in control applications can be divided into four major classes. The first class includes approaches in which the network forms part of an adaptive mechanism which modulates the structure or parameters of the controller. In the second class the network forms part of the control loop and replaces the conventional control block, thus leading to a pure neural network control law. The third class consists of topologies in which neural networks are used to produce models of the system which are then utilized in the control structure, whilst the fourth category includes suggestions which are specific to the problem or system structure and not suitable for a generic neural network-based-approach to control problems. Although several of these approaches show promising results, only model based structures are evaluated in this thesis. This is due to the fact that many of the topologies in other classes require system estimation to produce the desired network output during training, whereas the training data for network models is obtained directly by sampling the system input(s) and output(s). Furthermore, many suggested structures lack the mathematical motivation to consider them for a general structure, whilst the neural network model topologies form natural extensions of their linear model based origins. Since it is impractical and often impossible to collect sufficient training data prior to implementing the neural network based control structure, the network models have to be suited to on-line training during operation. This limits the choice of network topologies for models to those that can be trained on a sample by sample basis (pattern learning) and furthermore are capable of learning even when the variation in training data is relatively slow as is the case for most controlled dynamic systems. A study of feedforward topologies (one of the main classes of networks) shows that the multilayer perceptron network with its backpropagation training is well suited to model nonlinear mappings but fails to learn and generalize when subjected to slow varying training data. This is due to the global input interpretation of this structure, in which any input affects all hidden nodes such that no effective partitioning of the input space can be achieved. This problem is overcome in a less flexible feedforward structure, known as regular Gaussian network. In this network, the response of each hidden node is limited to a -sphere around its center and these centers are fixed in a uniform distribution over the entire input space. Each input to such a network is therefore interpreted locally and only effects nodes with their centers in close proximity. A deficiency common to all feedforward networks, when considered as models for dynamic systems, is their inability to conserve previous outputs and states for future predictions. Since this absence of dynamic capability requires the user to identify the order of the system prior to training and is therefore not entirely self-learning, more advanced network topologies are investigated. The most versatile of these structures, known as a fully recurrent network, re-uses the previous state of each of its nodes for subsequent outputs. However, despite its superior modelling capability, the tests performed using the Williams and Zipser training algorithm show that such structures often fail to converge and require excessive computing power and time, when increased in size. Despite its rigid structure and lack of dynamic capability, the regular Gaussian network produces the most reliable and robust models and was therefore selected for the evaluations in this study. To overcome the network initialization problem, found when using a pure neural network model, a combination structure· _in which the network operates in parallel with a mathematical model is suggested. This approach allows the controller to be implemented without any prior network training and initially relies purely on the mathematical model, much like conventional approaches. The network portion is then trained during on-line operation in order to improve the model. Once trained, the enhanced model can be used to improve the system response, since model exactness plays an important role in the control action achievable with model based structures. The applicability of control structures based on neural network models is evaluated by comparing the performance of two network approaches to that of a linear structure, using a simulation of a nonlinear tank system. The first network controller is developed from the internal model control (IMC) structure, which includes a forward and inverse model of the system to be controlled. Both models can be replaced by a combination of mathematical and neural topologies, the network portion of which is trained on-line to compensate for the discrepancies between the linear model _ and nonlinear system. Since the network has no dynamic ·capacity, .former system outputs are used as inputs to the forward and inverse model. Due to this direct feedback, the trained structure can be tuned to perform within limits not achievable using a conventional linear system. As mentioned previously the IMC structure uses both forward and inverse models. Since the control law requires that these models are exact inverses, an iterative inversion algorithm has to be used to improve the values produced by the inverse combination model. Due to deadtimes and right-half-plane zeroes, many systems are furthermore not directly invertible. Whilst such unstable elements can be removed from mathematical models, the inverse network is trained directly from the forward model and can not be compensated. These problems could be overcome by a control structure for which only a forward model is required. The neural predictive controller (NPC) presents such a topology. Based on the optimal control philosophy, this structure uses a model to predict several future outputs. The errors between these and the desired output are then collected to form the cost function, which may also include other factors such as the magnitude of the change in input. The input value that optimally fulfils all the objectives used to formulate the cost function, can then be found by locating its minimum. Since the model in this structure includes a neural network, the optimization can not be formulated in a closed mathematical form and has to be performed using a numerical method. For the NPC topology, as for the neural network IMC structure, former system outputs are fed back to the model and again the trained network approach produces results not achievable with a linear model. Due to the single network approach, the NPC topology furthermore overcomes the limitations described for the neural network IMC structure and can be extended to include multivariable systems. This study shows that the nonlinear modelling capability of neural networks can be exploited to produce learning control structures with improved responses for nonlinear systems. Many of the difficulties described are due to the computational burden of these networks and associated algorithms. These are likely to become less significant due to the rapid development in computer technology and advances in neural network hardware. Although neural network based control structures are unlikely to replace the well understood linear topologies, which are adequate for the majority of applications, they might present a practical alternative where (due to nonlinearity or modelling errors) the conventional controller can not achieve the required control action

    Multi-time-horizon Solar Forecasting Using Recurrent Neural Network

    Full text link
    The non-stationarity characteristic of the solar power renders traditional point forecasting methods to be less useful due to large prediction errors. This results in increased uncertainties in the grid operation, thereby negatively affecting the reliability and increased cost of operation. This research paper proposes a unified architecture for multi-time-horizon predictions for short and long-term solar forecasting using Recurrent Neural Networks (RNN). The paper describes an end-to-end pipeline to implement the architecture along with the methods to test and validate the performance of the prediction model. The results demonstrate that the proposed method based on the unified architecture is effective for multi-horizon solar forecasting and achieves a lower root-mean-squared prediction error compared to the previous best-performing methods which use one model for each time-horizon. The proposed method enables multi-horizon forecasts with real-time inputs, which have a high potential for practical applications in the evolving smart grid.Comment: Accepted at: IEEE Energy Conversion Congress and Exposition (ECCE 2018), 7 pages, 5 figures, code available: sakshi-mishra.github.i
    corecore