33,134 research outputs found

    Multi-space Variational Encoder-Decoders for Semi-supervised Labeled Sequence Transduction

    Full text link
    Labeled sequence transduction is a task of transforming one sequence into another sequence that satisfies desiderata specified by a set of labels. In this paper we propose multi-space variational encoder-decoders, a new model for labeled sequence transduction with semi-supervised learning. The generative model can use neural networks to handle both discrete and continuous latent variables to exploit various features of data. Experiments show that our model provides not only a powerful supervised framework but also can effectively take advantage of the unlabeled data. On the SIGMORPHON morphological inflection benchmark, our model outperforms single-model state-of-art results by a large margin for the majority of languages.Comment: Accepted by ACL 201

    Deep Tree Transductions - A Short Survey

    Full text link
    The paper surveys recent extensions of the Long-Short Term Memory networks to handle tree structures from the perspective of learning non-trivial forms of isomorph structured transductions. It provides a discussion of modern TreeLSTM models, showing the effect of the bias induced by the direction of tree processing. An empirical analysis is performed on real-world benchmarks, highlighting how there is no single model adequate to effectively approach all transduction problems.Comment: To appear in the Proceedings of the 2019 INNS Big Data and Deep Learning (INNSBDDL 2019). arXiv admin note: text overlap with arXiv:1809.0909

    Unsupervised Domain Adaptation using Graph Transduction Games

    Full text link
    Unsupervised domain adaptation (UDA) amounts to assigning class labels to the unlabeled instances of a dataset from a target domain, using labeled instances of a dataset from a related source domain. In this paper, we propose to cast this problem in a game-theoretic setting as a non-cooperative game and introduce a fully automatized iterative algorithm for UDA based on graph transduction games (GTG). The main advantages of this approach are its principled foundation, guaranteed termination of the iterative algorithms to a Nash equilibrium (which corresponds to a consistent labeling condition) and soft labels quantifying the uncertainty of the label assignment process. We also investigate the beneficial effect of using pseudo-labels from linear classifiers to initialize the iterative process. The performance of the resulting methods is assessed on publicly available object recognition benchmark datasets involving both shallow and deep features. Results of experiments demonstrate the suitability of the proposed game-theoretic approach for solving UDA tasks.Comment: Oral IJCNN 201

    Ancient Coin Classification Using Graph Transduction Games

    Full text link
    Recognizing the type of an ancient coin requires theoretical expertise and years of experience in the field of numismatics. Our goal in this work is automatizing this time consuming and demanding task by a visual classification framework. Specifically, we propose to model ancient coin image classification using Graph Transduction Games (GTG). GTG casts the classification problem as a non-cooperative game where the players (the coin images) decide their strategies (class labels) according to the choices made by the others, which results with a global consensus at the final labeling. Experiments are conducted on the only publicly available dataset which is composed of 180 images of 60 types of Roman coins. We demonstrate that our approach outperforms the literature work on the same dataset with the classification accuracy of 73.6% and 87.3% when there are one and two images per class in the training set, respectively
    • …
    corecore