42,166 research outputs found

    A Scalable Model of Cerebellar Adaptive Timing and Sequencing: The Recurrent Slide and Latch (RSL) Model

    Full text link
    From the dawn of modern neural network theory, the mammalian cerebellum has been a favored object of mathematical modeling studies. Early studies focused on the fan-out, convergence, thresholding, and learned weighting of perceptual-motor signals within the cerebellar cortex. This led in the proposals of Albus (1971; 1975) and Marr (1969) to the still viable idea that the granule cell stage in the cerebellar cortex performs a sparse expansive recoding of the time-varying input vector. This recoding reveals and emphasizes combinations (of input state variables) in a distributed representation that serves as a basis for the learned, state-dependent control actions engendered by cerebellar outputs to movement related centers. Although well-grounded as such, this perspective seriously underestimates the intelligence of the cerebellar cortex. Context and state information arises asynchronously due to the heterogeneity of sources that contribute signals to compose the cerebellar input vector. These sources include radically different sensory systems - vision, kinesthesia, touch, balance and audition - as well as many stages of the motor output channel. To make optimal use of available signals, the cerebellum must be able to sift the evolving state representation for the most reliable predictors of the need for control actions, and to use those predictors even if they appear only transiently and well in advance of the optimal time for initiating the control action. Such a cerebellar adaptive timing competence has recently been experimentally verified (Perrett, Ruiz, & Mauk, 1993). This paper proposes a modification to prior, population, models for cerebellar adaptive timing and sequencing. Since it replaces a population with a single clement, the proposed Recurrent Slide and Latch (RSL) model is in one sense maximally efficient, and therefore optimal from the perspective of scalability.Defense Advanced Research Projects Agency and the Office of Naval Research (N00014-92-J-1309, N00014-93-1-1364, N00014-95-1-0409)

    RVOS: end-to-end recurrent network for video object segmentation

    Get PDF
    Multiple object video object segmentation is a challenging task, specially for the zero-shot case, when no object mask is given at the initial frame and the model has to find the objects to be segmented along the sequence. In our work, we propose a Recurrent network for multiple object Video Object Segmentation (RVOS) that is fully end-to-end trainable. Our model incorporates recurrence on two different domains: (i) the spatial, which allows to discover the different object instances within a frame, and (ii) the temporal, which allows to keep the coherence of the segmented objects along time. We train RVOS for zero-shot video object segmentation and are the first ones to report quantitative results for DAVIS-2017 and YouTube-VOS benchmarks. Further, we adapt RVOS for one-shot video object segmentation by using the masks obtained in previous time steps as inputs to be processed by the recurrent module. Our model reaches comparable results to state-of-the-art techniques in YouTube-VOS benchmark and outperforms all previous video object segmentation methods not using online learning in the DAVIS-2017 benchmark. Moreover, our model achieves faster inference runtimes than previous methods, reaching 44ms/frame on a P100 GPU.Peer ReviewedPostprint (published version

    Forecasting with time series imaging

    Full text link
    Feature-based time series representations have attracted substantial attention in a wide range of time series analysis methods. Recently, the use of time series features for forecast model averaging has been an emerging research focus in the forecasting community. Nonetheless, most of the existing approaches depend on the manual choice of an appropriate set of features. Exploiting machine learning methods to extract features from time series automatically becomes crucial in state-of-the-art time series analysis. In this paper, we introduce an automated approach to extract time series features based on time series imaging. We first transform time series into recurrence plots, from which local features can be extracted using computer vision algorithms. The extracted features are used for forecast model averaging. Our experiments show that forecasting based on automatically extracted features, with less human intervention and a more comprehensive view of the raw time series data, yields highly comparable performances with the best methods in the largest forecasting competition dataset (M4) and outperforms the top methods in the Tourism forecasting competition dataset

    Real-World Repetition Estimation by Div, Grad and Curl

    Get PDF
    We consider the problem of estimating repetition in video, such as performing push-ups, cutting a melon or playing violin. Existing work shows good results under the assumption of static and stationary periodicity. As realistic video is rarely perfectly static and stationary, the often preferred Fourier-based measurements is inapt. Instead, we adopt the wavelet transform to better handle non-static and non-stationary video dynamics. From the flow field and its differentials, we derive three fundamental motion types and three motion continuities of intrinsic periodicity in 3D. On top of this, the 2D perception of 3D periodicity considers two extreme viewpoints. What follows are 18 fundamental cases of recurrent perception in 2D. In practice, to deal with the variety of repetitive appearance, our theory implies measuring time-varying flow and its differentials (gradient, divergence and curl) over segmented foreground motion. For experiments, we introduce the new QUVA Repetition dataset, reflecting reality by including non-static and non-stationary videos. On the task of counting repetitions in video, we obtain favorable results compared to a deep learning alternative
    • …
    corecore