35,267 research outputs found

    Science Leadership: Impact of the New Science Coordinators Academy

    Get PDF
    This article discusses the impact of the New Science Coordinators Academy (NSCA) on two cohorts of participants. The NSCA is one of four components of the Virginia Initiative for Science Teaching and Achievement (VISTA), a United States Department of Education (USED) science education reform grant. The NSCA is designed to support new school district science coordinators (with less than five years of experience) and to continue building the state science education infrastructure. Research in education leadership traditionally focuses on teacher leaders, principals, and district office personnel. Interestingly, research on district office personnel rarely distinguishes between the different roles of district personnel. This article seeks to inform the field by sharing the impact of an academy designed for new science coordinators on their learning, and to begin to understand their role and impact in their district. The five-day Academy engaged participants in a variety of experiences designed to facilitate the following: 1) build leadership skills; 2) build a common understanding and vision for hands-on science, inquiry, problem-based learning, and nature of science in the science classroom; 3) investigate data to improve student learning goals; 4) and, develop a science strategic plan. The data indicate that the NSCA was successful at meeting its goals to support the participants and to build a common language among these new coordinators. Initial data also support the variety of responsibilities of these participants and the positive impact of the Academy on their district work

    What Can Be Learned from Computer Modeling? Comparing Expository and Modeling Approaches to Teaching Dynamic Systems Behavior

    Get PDF
    Computer modeling has been widely promoted as a means to attain higher order learning outcomes. Substantiating these benefits, however, has been problematic due to a lack of proper assessment tools. In this study, we compared computer modeling with expository instruction, using a tailored assessment designed to reveal the benefits of either mode of instruction. The assessment addresses proficiency in declarative knowledge, application, construction, and evaluation. The subscales differentiate between simple and complex structure. The learning task concerns the dynamics of global warming. We found that, for complex tasks, the modeling group outperformed the expository group on declarative knowledge and on evaluating complex models and data. No differences were found with regard to the application of knowledge or the creation of models. These results confirmed that modeling and direct instruction lead to qualitatively different learning outcomes, and that these two modes of instruction cannot be compared on a single “effectiveness measure”

    Responsible research and innovation in science education: insights from evaluating the impact of using digital media and arts-based methods on RRI values

    Get PDF
    The European Commission policy approach of Responsible Research and Innovation (RRI) is gaining momentum in European research planning and development as a strategy to align scientific and technological progress with socially desirable and acceptable ends. One of the RRI agendas is science education, aiming to foster future generations' acquisition of skills and values needed to engage in society responsibly. To this end, it is argued that RRI-based science education can benefit from more interdisciplinary methods such as those based on arts and digital technologies. However, the evidence existing on the impact of science education activities using digital media and arts-based methods on RRI values remains underexplored. This article comparatively reviews previous evidence on the evaluation of these activities, from primary to higher education, to examine whether and how RRI-related learning outcomes are evaluated and how these activities impact on students' learning. Forty academic publications were selected and its content analysed according to five RRI values: creative and critical thinking, engagement, inclusiveness, gender equality and integration of ethical issues. When evaluating the impact of digital and arts-based methods in science education activities, creative and critical thinking, engagement and partly inclusiveness are the RRI values mainly addressed. In contrast, gender equality and ethics integration are neglected. Digital-based methods seem to be more focused on students' questioning and inquiry skills, whereas those using arts often examine imagination, curiosity and autonomy. Differences in the evaluation focus between studies on digital media and those on arts partly explain differences in their impact on RRI values, but also result in non-documented outcomes and undermine their potential. Further developments in interdisciplinary approaches to science education following the RRI policy agenda should reinforce the design of the activities as well as procedural aspects of the evaluation research

    Support of the collaborative inquiry learning process: influence of support on task and team regulation

    Get PDF
    Regulation of the learning process is an important condition for efficient and effective learning. In collaborative learning, students have to regulate their collaborative activities (team regulation) next to the regulation of their own learning process focused on the task at hand (task regulation). In this study, we investigate how support of collaborative inquiry learning can influence the use of regulative activities of students. Furthermore, we explore the possible relations between task regulation, team regulation and learning results. This study involves tenth-grade students who worked in pairs in a collaborative inquiry learning environment that was based on a computer simulation, Collisions, developed in the program SimQuest. Students of the same team worked on two different computers and communicated through chat. Chat logs of students from three different conditions are compared. Students in the first condition did not receive any support at all (Control condition). In the second condition, students received an instruction in effective communication, the RIDE rules (RIDE condition). In the third condition, students were, in addition to receiving the RIDE rules instruction, supported by the Collaborative Hypothesis Tool (CHT), which helped the students with formulating hypotheses together (CHT condition). The results show that students overall used more team regulation than task regulation. In the RIDE condition and the CHT condition, students regulated their team activities most often. Moreover, in the CHT condition the regulation of team activities was positively related to the learning results. We can conclude that different measures of support can enhance the use of team regulative activities, which in turn can lead to better learning results

    Collaborative trails in e-learning environments

    Get PDF
    This deliverable focuses on collaboration within groups of learners, and hence collaborative trails. We begin by reviewing the theoretical background to collaborative learning and looking at the kinds of support that computers can give to groups of learners working collaboratively, and then look more deeply at some of the issues in designing environments to support collaborative learning trails and at tools and techniques, including collaborative filtering, that can be used for analysing collaborative trails. We then review the state-of-the-art in supporting collaborative learning in three different areas – experimental academic systems, systems using mobile technology (which are also generally academic), and commercially available systems. The final part of the deliverable presents three scenarios that show where technology that supports groups working collaboratively and producing collaborative trails may be heading in the near future

    Harnessing Technology: new modes of technology-enhanced learning: opportunities and challenges

    Get PDF
    A report commissioned by Becta to explore the potential impact on education, staff and learners of new modes of technology enhanced learning, envisaged as becoming available in subsequent years. A generative framework, developed by the researchers is described, which was used as an analytical tool to relate the possibilities of the technology described to learning and teaching activities. This report is part of the curriculum and pedagogy strand of Becta's programme of managed research in support of the development of Harnessing Technology: Next Generation Learning 2008-14. A system-wide strategy for technology in education and skills. Between April 2008 and March 2009, the project carried out research, in three iterative phases, into the future of learning with technology. The research has drawn from, and aims to inform, all UK education sectors
    corecore