1,319 research outputs found

    Developing technological fluency through creative robotics

    Get PDF
    Children have frequent access to technologies such as computers, game systems, and mobile phones (Sefton-Green, 2006). But it is useful to distinguish between engaging with technology as a 'consumer' and engaging as a 'creator' or designer (Resnick & Rusk, 1996). Children who engage as the former can use technology efficiently, while those who engage as the latter are creative and adaptive with technology. The question remains of how best to encourage movement along this continuum, towards technological fluency. This study defines three habits of mind associated with fluent technology engagement [(1) approaching technology as a tool and a creative medium, (2) understanding how to engage in a design process, and (3) seeing oneself as competent to engage in technological creativity], and examines the implementation of a learning environment designed to support them. Robot Diaries, an out-of-school workshop, encourages middle school girls to explore different ways of expressing and communicating with technology, to integrate technology with personal or fictional storytelling, and to adapt their technical knowledge to suit their own projects and ideas. Two research purposes guide this study. The first is to explore whether Robot Diaries, which blends arts and engineering curricula, can support multiple pathways to technological fluency. The second purpose is to develop and test a set of instruments to measure the development of technological fluency. Robot Diaries was implemented with a group of seven home-schooled girls between the ages of 9 and 14. Instructors from a home school enrichment program ran the workshop. The study utilized a mixed methods approach. Analysis suggests two distinct patterns of engagement in Robot Diaries are possible - an engineering focus (characterized by attention to the structure and function of the robot) and an artistic focus (characterized by attention to the robot's representational capacity). The ability to support and sustain multiple levels of participation is an important quality in a workshop designed to broaden engagement in technology exploration activities. Pre-post assessments suggest changes in confidence and (to a lesser extent) knowledge. This study has implications for the design of learning environments to support technological fluency, and for measuring this construct

    Choreographic and Somatic Approaches for the Development of Expressive Robotic Systems

    Full text link
    As robotic systems are moved out of factory work cells into human-facing environments questions of choreography become central to their design, placement, and application. With a human viewer or counterpart present, a system will automatically be interpreted within context, style of movement, and form factor by human beings as animate elements of their environment. The interpretation by this human counterpart is critical to the success of the system's integration: knobs on the system need to make sense to a human counterpart; an artificial agent should have a way of notifying a human counterpart of a change in system state, possibly through motion profiles; and the motion of a human counterpart may have important contextual clues for task completion. Thus, professional choreographers, dance practitioners, and movement analysts are critical to research in robotics. They have design methods for movement that align with human audience perception, can identify simplified features of movement for human-robot interaction goals, and have detailed knowledge of the capacity of human movement. This article provides approaches employed by one research lab, specific impacts on technical and artistic projects within, and principles that may guide future such work. The background section reports on choreography, somatic perspectives, improvisation, the Laban/Bartenieff Movement System, and robotics. From this context methods including embodied exercises, writing prompts, and community building activities have been developed to facilitate interdisciplinary research. The results of this work is presented as an overview of a smattering of projects in areas like high-level motion planning, software development for rapid prototyping of movement, artistic output, and user studies that help understand how people interpret movement. Finally, guiding principles for other groups to adopt are posited.Comment: Under review at MDPI Arts Special Issue "The Machine as Artist (for the 21st Century)" http://www.mdpi.com/journal/arts/special_issues/Machine_Artis

    Preservice teachers’ science learning and self-efficacy to teach with robotics-based activities: Investigating a scaffolded and a self-guided approach

    Get PDF
    Introduction: Robotics is viewed as a viable pedagogical strategy for STEM learning because it is characterized by many practices common to the STEM disciplines such as engineering design. With many national curricular calling for STEM integration in K-12 formal educational settings, there is a need for empirical evidence about the effectiveness of different pedagogical approaches to teach with robotics-based activities to promote curriculum learning outcomes and teaching practice. This exploratory study investigated the effectiveness of a scaffolded robotics intervention and a self-guided robotics intervention on pre-service teacher knowledge (PST) of science concepts related to gears and on PST self-efficacy to teach with the robotics-based activities. Methods: A quasi-experimental, pre-post intervention study was implemented with two non-equivalent groups of elementary preservice teachers (PSTs) in a Bachelor of Education program. PSTs in the self-guided group (n = 11) worked with robotics kits in the library at their own pace. PSTs in the scaffolded intervention group (n = 16) were guided through the activity by the author with instructional scaffolds. IBM SPSS Statistics 27 was used to analyze the data. Results: The relationship between intervention type and gains in science knowledge was not statistically significant for the self-guided group but was statistically significant for the scaffolded group suggesting that scaffolding supported PST’s learning of the science concepts. With respect to PST self- efficacy to teach with the robotics-based activity, both intervention types revealed statistically significant gains from pre to post tests, however effect sizes indicated that the scaffolded intervention resulted in greater gains in PST self-efficacy to teach with the robotics-based activities. Discussion: The results provide exploratory evidence that the scaffolded robotics approach, modelled for and experienced by the pre-service teachers in this study, was effective for their learning of science curricular concepts related to gears and for developing their self-efficacy for teaching the robotics-based activities. It should be noted that findings may not be generalizable due to the small sample sizes, especially of the self-guided group. Nevertheless, the findings do provide insights for teacher educators incorporating robotics-based activities into curricular courses such as science methods as it provides specific examples of scaffolds that were effective for science learning and for developing PST self-efficacy. The study also contributes to the literature on instructional strategies that promote robotics adoption in K-12 schools to support development of STEM knowledge and skills.The Brock Library Open Access Publishing Fun

    Towards an interactive framework for robot dancing applications

    Get PDF
    Estágio realizado no INESC-Porto e orientado pelo Prof. Doutor Fabien GouyonTese de mestrado integrado. Engenharia Electrotécnica e de Computadores - Major Telecomunicações. Faculdade de Engenharia. Universidade do Porto. 200

    Granular Dance

    Get PDF

    Using Robotics to Support the Acquisition of STEM and 21st-Century Competencies: Promising (and Practical) Directions

    Get PDF
    To enhance how educators use robotics to support the development of STEM and 21st century competencies, we report findings from focus groups and interviews with 133 elementary teachers and 46 elementary students, 19 video-recorded classroom observations, and a teacher survey from Ontario, Canada. We find that teachers use robotics in a variety of ways to support the development of cognitive, interpersonal, and intrapersonal skills. Despite the potential benefits, our participants identified several factors that limit the adoption of robotics teaching and learning on a wider scale, including insufficient curriculum and assessment integration, resources, and professional development and support. We provide practical policy guidelines to support the broader integration of robotics and reflect on how these recommendations may inform teaching and learning in a (post-) COVID-19 classroom.Dans le but d’améliorer la façon dont les éducateurs utilisent la robotique pour soutenir le développement des compétences du XXIe siècle et des STIM, nous rapportons ici les résultats de groupes de discussion et d’entretiens individuels avec 133 enseignants et 46 élèves du primaire, de 19 observations de vidéos enregistrées en classe et d’un sondage auprès des enseignants effectué en Ontario, au Canada. Nous constatons que les enseignants utilisent la robotique de diverses manières pour soutenir le développement des compétences cognitives, interpersonnelles et intrapersonnelles. Malgré les avantages potentiels, nos participants ont identifié plusieurs facteurs qui limitent l’adoption de l’enseignement et de l’apprentissage de la robotique à plus grande échelle. Notamment, l’intégration insuffisante dans les curriculums et les évaluations, une pénurie de ressources, et un manque de développement et de soutien professionnel. Nous suggérons des directives politiques pratiques pour soutenir l’intégration plus efficace de la robotique, et considérons la manière dont ces recommandations pourraient éclairer l’enseignement et l’apprentissage dans une salle de classe (post) Covid-19

    Virtual Reality and Choreographic Practice:The Potential for New Creative Methods

    Get PDF
    Virtual reality (VR) is becoming an increasingly intriguing space for dancers and choreographers. Choreographers may find new possibility emerging in using virtual reality to create movement and the WhoLoDancE: Whole-Body Interaction Learning for Dance Education project is developing tools to assist in this process. The interdisciplinary team which includes dancers, choreographers, educators, artists, coders, technologists and system architects have collaborated in engaging, discussing, analysing, testing and working with end-users to help with thinking about the issues that emerge in the creation of these tools. The paper sets out to explore the creative potential of VR in the context of WhoLoDancE and how this may offer new insights for the choreographer and dancer. We pay attention to the virtual environment, the virtual performance and the virtual dancer as some of the key components for equipping the choreographer to use in the creating process and to inform the dancing body. The cyclical process of live body to virtual, back to the dancing body as a choreographic device is an innovative way to approach practice. This approach may lead to new insights and innovations in choreographic methods that may extend beyond the project and ultimately take dance performance in a new direction
    • …
    corecore