2,418 research outputs found

    Evolutionary stability of behavioural types in the continuous double auction

    No full text
    In this paper, we investigate the effectiveness of different types of bidding behaviour for trading agents in the Continuous Double Auction (CDA). Specifically, we consider behavioural types that are neutral (expected profit maximising), passive (targeting a higher profit than neutral) and aggressive (trading off profit for a better chance of transacting). For these types, we employ an evolutionary game-theoretic analysis to determine the population dynamics of agents that use them in different types of environments, including dynamic ones with market shocks. From this analysis, we find that given a symmetric demand and supply, agents are most likely to adopt neutral behaviour in static environments, while there tends to be more passive than neutral agents in dynamic ones. Furthermore, when we have asymmetric demand and supply, agents invariably adopt passive behaviour in both static and dynamic environments, though the gain in so doing is considerably smaller than in the symmetric case

    Assessment of Adaptability of a Supply Chain Trading Agent’s Strategy: Evolutionary Game Theory Approach

    Get PDF
    With the increase in the complexity of supply chain management, the use of intelligent agents for automated trading has gained popularity (Collins, Arunachalam, B, et al. 2006). The performance of supply-chain agents depends on not just the market environment (supply and demand patterns) but also on what types of other agents they are competing with. For designers of such agents it is important to ascertain that their agents are robust and can adapt to changing market and competitive environments. However, to date there has not been any work done that assesses the adaptability of a trading agent’s strategy in the presence of various demand and supply distributions when competing with a changing composition of agents using different strategies. In this paper we use the concept of replicator dynamics to study the evolution of a population of strategies used by supply chain agents when the different agents are competing against each other. We also study the evolution of the population of agents’ strategies in the presence of six types of adverse market conditions. In particular we test three strategies that have been presented in the literature and our results indicate that over time supply chain agents gravitate towards using the SCMaster strategy in most scenarios

    Agent-orientated auction mechanism and strategy design

    Get PDF
    Agent-based technology is playing an increasingly important role in today’s economy. Usually a multi-agent system is needed to model an economic system such as a market system, in which heterogeneous trading agents interact with each other autonomously. Two questions often need to be answered regarding such systems: 1) How to design an interacting mechanism that facilitates efficient resource allocation among usually self-interested trading agents? 2) How to design an effective strategy in some specific market mechanisms for an agent to maximise its economic returns? For automated market systems, auction is the most popular mechanism to solve resource allocation problems among their participants. However, auction comes in hundreds of different formats, in which some are better than others in terms of not only the allocative efficiency but also other properties e.g., whether it generates high revenue for the auctioneer, whether it induces stable behaviour of the bidders. In addition, different strategies result in very different performance under the same auction rules. With this background, we are inevitably intrigued to investigate auction mechanism and strategy designs for agent-based economics. The international Trading Agent Competition (TAC) Ad Auction (AA) competition provides a very useful platform to develop and test agent strategies in Generalised Second Price auction (GSP). AstonTAC, the runner-up of TAC AA 2009, is a successful advertiser agent designed for GSP-based keyword auction. In particular, AstonTAC generates adaptive bid prices according to the Market-based Value Per Click and selects a set of keyword queries with highest expected profit to bid on to maximise its expected profit under the limit of conversion capacity. Through evaluation experiments, we show that AstonTAC performs well and stably not only in the competition but also across a broad range of environments. The TAC CAT tournament provides an environment for investigating the optimal design of mechanisms for double auction markets. AstonCAT-Plus is the post-tournament version of the specialist developed for CAT 2010. In our experiments, AstonCAT-Plus not only outperforms most specialist agents designed by other institutions but also achieves high allocative efficiencies, transaction success rates and average trader profits. Moreover, we reveal some insights of the CAT: 1) successful markets should maintain a stable and high market share of intra-marginal traders; 2) a specialist’s performance is dependent on the distribution of trading strategies. However, typical double auction models assume trading agents have a fixed trading direction of either buy or sell. With this limitation they cannot directly reflect the fact that traders in financial markets (the most popular application of double auction) decide their trading directions dynamically. To address this issue, we introduce the Bi-directional Double Auction (BDA) market which is populated by two-way traders. Experiments are conducted under both dynamic and static settings of the continuous BDA market. We find that the allocative efficiency of a continuous BDA market mainly comes from rational selection of trading directions. Furthermore, we introduce a high-performance Kernel trading strategy in the BDA market which uses kernel probability density estimator built on historical transaction data to decide optimal order prices. Kernel trading strategy outperforms some popular intelligent double auction trading strategies including ZIP, GD and RE in the continuous BDA market by making the highest profit in static games and obtaining the best wealth in dynamic games

    A Peer-to-Peer Agent Auction

    Get PDF
    In this work we examine a peer-to-peer agent continuous double auction. We compare agents trading using peer-to-peer communications with agents using the same trading strategy in an auction that makes use of a centralized auctioneer to disseminate information. We present simulation data for these two auctions running with 2,500 to 160,000 agents. We find that the peer-to-peer auction is able to display price convergence behavior similar to that of the centralized auction. Further, the data shows that the peer-to-peer system has a constant cost in the number of message rounds needed to find the market equilibrium price as the number of traders is increased, in contrast to the linear cost incurred by the central auctioneer. Considering the above message costs, the peer-to-peer system outperformed the simple central auction by at least 100 times in our simulations. We further calculate that for a distributed hierarchical set of auctioneers, for which the message rounds cost of finding equilibrium are reduced to logarithmic in the number of traders, the peer-to-peer system will still produce better performance for systems with more than 5,000 traders

    Fuzzy and tile coding approximation techniques for coevolution in reinforcement learning

    Get PDF
    PhDThis thesis investigates reinforcement learning algorithms suitable for learning in large state space problems and coevolution. In order to learn in large state spaces, the state space must be collapsed to a computationally feasible size and then generalised about. This thesis presents two new implementations of the classic temporal difference (TD) reinforcement learning algorithm Sarsa that utilise fuzzy logic principles for approximation, FQ Sarsa and Fuzzy Sarsa. The effectiveness of these two fuzzy reinforcement learning algorithms is investigated in the context of an agent marketplace. It presents a practical investigation into the design of fuzzy membership functions and tile coding schemas. A critical analysis of the fuzzy algorithms to a related technique in function approximation, a coarse coding approach called tile coding is given in the context of three different simulation environments; the mountain-car problem, a predator/prey gridworld and an agent marketplace. A further comparison between Fuzzy Sarsa and tile coding in the context of the nonstationary environments of the agent marketplace and predator/prey gridworld is presented. This thesis shows that the Fuzzy Sarsa algorithm achieves a significant reduction of state space over traditional Sarsa, without loss of the finer detail that the FQ Sarsa algorithm experiences. It also shows that Fuzzy Sarsa and gradient descent Sarsa(λ) with tile coding learn similar levels of distinction against a stationary strategy. Finally, this thesis demonstrates that Fuzzy Sarsa performs better in a competitive multiagent domain than the tile coding solution

    Economic dynamics of agents in multiple auctions

    Full text link

    A Free Exchange e-Marketplace for Digital Services

    Get PDF
    The digital era is witnessing a remarkable evolution of digital services. While the prospects are countless, the e-marketplaces of digital services are encountering inherent game-theoretic and computational challenges that restrict the rational choices of bidders. Our work examines the limited bidding scope and the inefficiencies of present exchange e-marketplaces. To meet challenges, a free exchange e-marketplace is proposed that follows the free market economy. The free exchange model includes a new bidding language and a double auction mechanism. The rule-based bidding language enables the flexible expression of preferences and strategic conduct. The bidding message holds the attribute-valuations and bidding rules of the selected services. The free exchange deliberates on attributes and logical bidding rules for automatic deduction and formation of elicited services and bids that result in a more rapid self-managed multiple exchange trades. The double auction uses forward and reverse generalized second price auctions for the symmetric matching of multiple digital services of identical attributes and different quality levels. The proposed double auction uses tractable heuristics that secure exchange profitability, improve truthful bidding and deliver stable social efficiency. While the strongest properties of symmetric exchanges are unfeasible game-theoretically, the free exchange converges rapidly to the social efficiency, Nash truthful stability, and weak budget balance by multiple quality-levels cross-matching, constant learning and informs at repetitive thick trades. The empirical findings validate the soundness and viability of the free exchange

    Understanding Financial Market Behavior through Empirical Game-Theoretic Analysis

    Full text link
    Financial market activity is increasingly controlled by algorithms, interacting through electronic markets. Unprecedented information response times, autonomous operation, use of machine learning and other adaptive techniques, and ability to proliferate novel strategies at scale are all reasons to question whether algorithmic trading may produce dynamic behavior qualitatively different from what arises in trading under direct human control. Given the high level of competition between trading firms and the significant financial incentives to trading, it is desirable to understand the effect incentives have on the behavior of agents in financial markets. One natural way to analyze this effect is through the economic concept of a Nash equilibrium, a behavior profile of every agent such that no individual stands to gain by doing something different. Some of the incentives traders face arise from the complexities of modern market structure. Recent studies have turned to agent-based modeling as a way to capture behavioral response to this structure. Agent-based modeling is a simulation paradigm that allows studying the interaction of agents in a simulated environment, and it has been used to model various aspects of financial market structure. This thesis builds on recent agent-based models of financial markets by imposing agent rationality and studying the models in equilibrium. I use empirical game-theoretic analysis, a methodology for computing approximately rational behavior in agent-based models, to investigate three important aspects of market structure. First, I evaluate the impact of strategic bid shading on agent welfare. Bid shading is when agents demand better prices, lower if they are buying or higher if they are selling, and is typically associated with lower social welfare. My results indicate that in many market environments, strategic bid shading actually improves social welfare, even with some of the complexities of financial markets. Next, I investigate the optimal clearing interval for a proposed market mechanism, the frequent call market. There is significant evidence to support the idea that traders will benefit from trading in a frequent call market over standard continuous double auction markets. My results confirm this statement for a wide variety of market settings, but I also find a few circumstances, particularly when large informational advantages exist, or when markets are thin, that call markets consistently hurt welfare, independent of frequency. I conclude with an investigation on the effect of trend following on market stability. Here I find that the presence of trend followers alters a market’s response to shock. In the absence of trend followers, shocks are small but have a long recovery. When trend followers are present, they alter background trader behavior resulting in more severe shocks that recover much more quickly. I also develop a novel method to efficiently evaluate the effect of shock anticipation on equilibrium. While anticipation of shocks does make markets more stable, trend followers continue to be profitable.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/144031/1/ebrink_1.pd
    corecore