377 research outputs found

    \u3cem\u3eGRASP News\u3c/em\u3e, Volume 6, Number 1

    Get PDF
    A report of the General Robotics and Active Sensory Perception (GRASP) Laboratory, edited by Gregory Long and Alok Gupta

    Scalable Approach to Uncertainty Quantification and Robust Design of Interconnected Dynamical Systems

    Full text link
    Development of robust dynamical systems and networks such as autonomous aircraft systems capable of accomplishing complex missions faces challenges due to the dynamically evolving uncertainties coming from model uncertainties, necessity to operate in a hostile cluttered urban environment, and the distributed and dynamic nature of the communication and computation resources. Model-based robust design is difficult because of the complexity of the hybrid dynamic models including continuous vehicle dynamics, the discrete models of computations and communications, and the size of the problem. We will overview recent advances in methodology and tools to model, analyze, and design robust autonomous aerospace systems operating in uncertain environment, with stress on efficient uncertainty quantification and robust design using the case studies of the mission including model-based target tracking and search, and trajectory planning in uncertain urban environment. To show that the methodology is generally applicable to uncertain dynamical systems, we will also show examples of application of the new methods to efficient uncertainty quantification of energy usage in buildings, and stability assessment of interconnected power networks

    Synergistic Effects of Phase Folding and Wavelet Denoising with Applications in Light Curve Analysis

    Get PDF
    The growing size of cosmological data sets is causing the current human-centric approach to cosmology to become impractical. Autonomous data analysis techniques need to be developed in order to advance the field of cosmology. This research examines the benefits of combining two signal analysis techniques, namely phase folding and wavelet denoising, into a newly-developed suite of autonomous light curve analysis tools which includes aspects of component extraction and period detection. The improvements these tools provide, with respect to autonomy and signal quality, are demonstrated using both simulated and real-world light curve data. Although applied to light curve data, the suite of tools developed in this dissertation are advantageous to the processing, modeling, or extractions to any periodic signal analysis

    Neural Networks: Training and Application to Nonlinear System Identification and Control

    Get PDF
    This dissertation investigates training neural networks for system identification and classification. The research contains two main contributions as follow:1. Reducing number of hidden layer nodes using a feedforward componentThis research reduces the number of hidden layer nodes and training time of neural networks to make them more suited to online identification and control applications by adding a parallel feedforward component. Implementing the feedforward component with a wavelet neural network and an echo state network provides good models for nonlinear systems.The wavelet neural network with feedforward component along with model predictive controller can reliably identify and control a seismically isolated structure during earthquake. The network model provides the predictions for model predictive control. Simulations of a 5-story seismically isolated structure with conventional lead-rubber bearings showed significant reductions of all response amplitudes for both near-field (pulse) and far-field ground motions, including reduced deformations along with corresponding reduction in acceleration response. The controller effectively regulated the apparent stiffness at the isolation level. The approach is also applied to the online identification and control of an unmanned vehicle. Lyapunov theory is used to prove the stability of the wavelet neural network and the model predictive controller. 2. Training neural networks using trajectory based optimization approachesTraining neural networks is a nonlinear non-convex optimization problem to determine the weights of the neural network. Traditional training algorithms can be inefficient and can get trapped in local minima. Two global optimization approaches are adapted to train neural networks and avoid the local minima problem. Lyapunov theory is used to prove the stability of the proposed methodology and its convergence in the presence of measurement errors. The first approach transforms the constraint satisfaction problem into unconstrained optimization. The constraints define a quotient gradient system (QGS) whose stable equilibrium points are local minima of the unconstrained optimization. The QGS is integrated to determine local minima and the local minimum with the best generalization performance is chosen as the optimal solution. The second approach uses the QGS together with a projected gradient system (PGS). The PGS is a nonlinear dynamical system, defined based on the optimization problem that searches the components of the feasible region for solutions. Lyapunov theory is used to prove the stability of PGS and QGS and their stability under presence of measurement noise

    A Comparative Analysis of EEG-based Stress Detection Utilizing Machine Learning and Deep Learning Classifiers with a Critical Literature Review

    Get PDF
    Background: Mental stress is considered to be a major contributor to different psychological and physical diseases. Different socio-economic issues, competition in the workplace and amongst the students, and a high level of expectations are the major causes of stress. This in turn transforms into several diseases and may extend to dangerous stages if not treated properly and timely, causing the situations such as depression, heart attack, and suicide. This stress is considered to be a very serious health abnormality. Stress is to be recognized and managed before it ruins the health of a person. This has motivated the researchers to explore the techniques for stress detection. Advanced machine learning and deep learning techniques are to be investigated for stress detection.  Methodology: A survey of different techniques used for stress detection is done here. Different stages of detection including pre-processing, feature extraction, and classification are explored and critically reviewed. Electroencephalogram (EEG) is the main parameter considered in this study for stress detection. After reviewing the state-of-the-art methods for stress detection, a typical methodology is implemented, where feature extraction is done by using principal component analysis (PCA), ICA, and discrete cosine transform. After the feature extraction, some state-of-art machine learning classifiers are employed for classification including support vector machine (SVM), K-nearest neighbor (KNN), NB, and CT. In addition to these classifiers, a typical deep-learning classifier is also utilized for detection purposes. The dataset used for the study is the Database for Emotion Analysis using Physiological Signals (DEAP) dataset. Results: Different performance measures are considered including precision, recall, F1-score, and accuracy. PCA with KNN, CT, SVM and NB have given accuracies of 65.7534%, 58.9041%, 61.6438%, and 57.5342% respectively. With ICA as feature extractor accuracies obtained are 58.9041%, 61.64384%, 57.5342%, and 54.79452% for the classifiers KNN, CT, SVM, and NB respectively. DCT is also considered a feature extractor with classical machine learning algorithms giving the accuracies of 56.16438%, 50.6849%, 54.7945%, and 45.2055% for the classifiers KNN, CT, SVM, and NB respectively. A conventional DCNN classification is performed given an accuracy of 76% and precision, recall, and F1-score of 0.66, 0.77, and 0.64 respectively. Conclusion: For EEG-based stress detection, different state-of-the-art machine learning and deep learning methods are used along with different feature extractors such as PCA, ICA, and DCT. Results show that the deep learning classifier gives an overall accuracy of 76%, which is a significant improvement over classical machine learning techniques with the accuracies as PCA+ KNN (65.75%), DCT+KNN (56.16%), and ICA+CT (61.64%)

    Advanced Data Analytics Methodologies for Anomaly Detection in Multivariate Time Series Vehicle Operating Data

    Get PDF
    Early detection of faults in the vehicle operating systems is a research domain of high significance to sustain full control of the systems since anomalous behaviors usually result in performance loss for a long time before detecting them as critical failures. In other words, operating systems exhibit degradation when failure begins to occur. Indeed, multiple presences of the failures in the system performance are not only anomalous behavior signals but also show that taking maintenance actions to keep the system performance is vital. Maintaining the systems in the nominal performance for the lifetime with the lowest maintenance cost is extremely challenging and it is important to be aware of imminent failure before it arises and implement the best countermeasures to avoid extra losses. In this context, the timely anomaly detection of the performance of the operating system is worthy of investigation. Early detection of imminent anomalous behaviors of the operating system is difficult without appropriate modeling, prediction, and analysis of the time series records of the system. Data based technologies have prepared a great foundation to develop advanced methods for modeling and prediction of time series data streams. In this research, we propose novel methodologies to predict the patterns of multivariate time series operational data of the vehicle and recognize the second-wise unhealthy states. These approaches help with the early detection of abnormalities in the behavior of the vehicle based on multiple data channels whose second-wise records for different functional working groups in the operating systems of the vehicle. Furthermore, a real case study data set is used to validate the accuracy of the proposed prediction and anomaly detection methodologies

    DEVELOPMENT OF DIAGNOSTIC AND PROGNOSTIC METHODOLOGIES FOR ELECTRONIC SYSTEMS BASED ON MAHALANOBIS DISTANCE

    Get PDF
    Diagnostic and prognostic capabilities are one aspect of the many interrelated and complementary functions in the field of Prognostic and Health Management (PHM). These capabilities are sought after by industries in order to provide maximum operational availability of their products, maximum usage life, minimum periodic maintenance inspections, lower inventory cost, accurate tracking of part life, and no false alarms. Several challenges associated with the development and implementation of these capabilities are the consideration of a system's dynamic behavior under various operating environments; complex system architecture where the components that form the overall system have complex interactions with each other with feed-forward and feedback loops of instructions; the unavailability of failure precursors; unseen events; and the absence of unique mathematical techniques that can address fault and failure events in various multivariate systems. The Mahalanobis distance methodology distinguishes multivariable data groups in a multivariate system by a univariate distance measure calculated from the normalized value of performance parameters and their correlation coefficients. The Mahalanobis distance measure does not suffer from the scaling effect--a situation where the variability of one parameter masks the variability of another parameter, which happens when the measurement ranges or scales of two parameters are different. A literature review showed that the Mahalanobis distance has been used for classification purposes. In this thesis, the Mahalanobis distance measure is utilized for fault detection, fault isolation, degradation identification, and prognostics. For fault detection, a probabilistic approach is developed to establish threshold Mahalanobis distance, such that presence of a fault in a product can be identified and the product can be classified as healthy or unhealthy. A technique is presented to construct a control chart for Mahalanobis distance for detecting trends and biasness in system health or performance. An error function is defined to establish fault-specific threshold Mahalanobis distance. A fault isolation approach is developed to isolate faults by identifying parameters that are associated with that fault. This approach utilizes the design-of-experiment concept for calculating residual Mahalanobis distance for each parameter (i.e., the contribution of each parameter to a system's health determination). An expected contribution range for each parameter estimated from the distribution of residual Mahalanobis distance is used to isolate the parameters that are responsible for a system's anomalous behavior. A methodology to detect degradation in a system's health using a health indicator is developed. The health indicator is defined as the weighted sum of a histogram bin's fractional contribution. The histogram's optimal bin width is determined from the number of data points in a moving window. This moving window approach is utilized for progressive estimation of the health indicator over time. The health indicator is compared with a threshold value defined from the system's healthy data to indicate the system's health or performance degradation. A symbolic time series-based health assessment approach is developed. Prognostic measures are defined for detecting anomalies in a product and predicting a product's time and probability of approaching a faulty condition. These measures are computed from a hidden Markov model developed from the symbolic representation of product dynamics. The symbolic representation of a product's dynamics is obtained by representing a Mahalanobis distance time series in symbolic form. Case studies were performed to demonstrate the capability of the proposed methodology for real time health monitoring. Notebook computers were exposed to a set of environmental conditions representative of the extremes of their life cycle profiles. The performance parameters were monitored in situ during the experiments, and the resulting data were used as a training dataset. The dataset was also used to identify specific parameter behavior, estimate correlation among parameters, and extract features for defining a healthy baseline. Field-returned computer data and data corresponding to artificially injected faults in computers were used as test data

    Neuronal cell signal analysis: spike detection algorithm development for microelectrode array recordings

    Get PDF
    Neural signal acquisition and processing techniques are rising trends among wide scientific and commercial areas. Microelectrode array (MEA) technology makes it possible to access and record the electrical activity of neural cells. In this work, human pluripotent stem cell (hPSC) -derived neuronal populations were grown on MEA plates. The activity of the cells was recorded and the research about modern signal processing methods for the neural spike detection was performed. A list of approaches was selected for detailed investigation and the most efficient one was chosen as the new technique for permanent use in the research group. The performed laboratory activities involved cell culture plating, regular medium changes, spontaneous activity recordings and pharmacological manipulations. The data acquired from pharmacological experiments were used for the comparison between the old and new spike detection algorithms in terms of the numbers of the detected events. The Stationary Wavelet Transform-based Teager Energy Operator (SWTTEO) shows prominent performance in the tests with synthetic data. The use of the proposed algorithm in conjunction with the common amplitude-based thresholding enables to lower the threshold and to detect more spikes without an excessive number of false positives. This mode is applicable for real cell data. The detection method was considered superior and was further distributed for the processing of all neural data of the research group which include signals acquired from neuronal populations derived from human embryonic and induced pluripotent stem cells (hESCs and iPSCs) as well as rat cells
    • …
    corecore