3,162 research outputs found

    Exploiting Vestibular Output during Learning Results in Naturally Curved Reaching Trajectories

    Get PDF
    Teaching a humanoid robot to reach for a visual target is a complex problem in part because of the high dimensionality of the control space. In this paper, we demonstrate a biologically plausible simplification of the reaching process that replaces the degrees of freedom in the neck of the robot with sensory readings from a vestibular system. We show that this simplification introduces errors that are easily overcome by a standard learning algorithm. Furthermore, the errors that are necessarily introduced by this simplification result in reaching trajectories that are curved in the same way as human reaching trajectories

    Intrinsic Motivation and Mental Replay enable Efficient Online Adaptation in Stochastic Recurrent Networks

    Full text link
    Autonomous robots need to interact with unknown, unstructured and changing environments, constantly facing novel challenges. Therefore, continuous online adaptation for lifelong-learning and the need of sample-efficient mechanisms to adapt to changes in the environment, the constraints, the tasks, or the robot itself are crucial. In this work, we propose a novel framework for probabilistic online motion planning with online adaptation based on a bio-inspired stochastic recurrent neural network. By using learning signals which mimic the intrinsic motivation signalcognitive dissonance in addition with a mental replay strategy to intensify experiences, the stochastic recurrent network can learn from few physical interactions and adapts to novel environments in seconds. We evaluate our online planning and adaptation framework on an anthropomorphic KUKA LWR arm. The rapid online adaptation is shown by learning unknown workspace constraints sample-efficiently from few physical interactions while following given way points.Comment: accepted in Neural Network

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    Better Vision Through Manipulation

    Get PDF
    For the purposes of manipulation, we would like to know what parts of the environment are physically coherent ensembles - that is, which parts will move together, and which are more or less independent. It takes a great deal of experience before this judgement can be made from purely visual information. This paper develops active strategies for acquiring that experience through experimental manipulation, using tight correlations between arm motion and optic flow to detect both the arm itself and the boundaries of objects with which it comes into contact. We argue that following causal chains of events out from the robot's body into the environment allows for a very natural developmental progression of visual competence, and relate this idea to results in neuroscience

    Towards Contextual Action Recognition and Target Localization with Active Allocation of Attention

    Get PDF
    Exploratory gaze movements are fundamental for gathering the most relevant information regarding the partner during social interactions. We have designed and implemented a system for dynamic attention allocation which is able to actively control gaze movements during a visual action recognition task. During the observation of a partners reaching movement, the robot is able to contextually estimate the goal position of the partner hand and the location in space of the candidate targets, while moving its gaze around with the purpose of optimizing the gathering of information relevant for the task. Experimental results on a simulated environment show that active gaze control provides a relevant advantage with respect to typical passive observation, both in term of estimation precision and of time required for action recognition. © 2012 Springer-Verlag

    Plastic Representation of the Reachable Space for a Humanoid Robot

    Get PDF
    Reaching a target object requires accurate estimation of the object spatial position and its further transformation into a suitable arm-motor command. In this paper, we propose a framework that provides a robot with a capacity to represent its reachable space in an adaptive way. The location of the target is represented implicitly by both the gaze direction and the angles of arm joints. Two paired neural networks are used to compute the direct and inverse transformations between the arm position and the head position. These networks allow reaching the target either through a ballistic movement or through visually-guided actions. Thanks to the latter skill, the robot can adapt its sensorimotor transformations so as to reflect changes in its body configuration. The proposed framework was implemented on the NAO humanoid robot, and our experimental results provide evidences for its adaptative capabilities

    Learning Singularity Avoidance

    Get PDF
    With the increase in complexity of robotic systems and the rise in non-expert users, it can be assumed that task constraints are not explicitly known. In tasks where avoiding singularity is critical to its success, this paper provides an approach, especially for non-expert users, for the system to learn the constraints contained in a set of demonstrations, such that they can be used to optimise an autonomous controller to avoid singularity, without having to explicitly know the task constraints. The proposed approach avoids singularity, and thereby unpredictable behaviour when carrying out a task, by maximising the learnt manipulability throughout the motion of the constrained system, and is not limited to kinematic systems. Its benefits are demonstrated through comparisons with other control policies which show that the constrained manipulability of a system learnt through demonstration can be used to avoid singularities in cases where these other policies would fail. In the absence of the systems manipulability subject to a tasks constraints, the proposed approach can be used instead to infer these with results showing errors less than 10^-5 in 3DOF simulated systems as well as 10^-2 using a 7DOF real world robotic system
    • …
    corecore