3,924 research outputs found

    Autoencoding a Soft Touch to Learn Grasping from On-land to Underwater

    Full text link
    Robots play a critical role as the physical agent of human operators in exploring the ocean. However, it remains challenging to grasp objects reliably while fully submerging under a highly pressurized aquatic environment with little visible light, mainly due to the fluidic interference on the tactile mechanics between the finger and object surfaces. This study investigates the transferability of grasping knowledge from on-land to underwater via a vision-based soft robotic finger that learns 6D forces and torques (FT) using a Supervised Variational Autoencoder (SVAE). A high-framerate camera captures the whole-body deformations while a soft robotic finger interacts with physical objects on-land and underwater. Results show that the trained SVAE model learned a series of latent representations of the soft mechanics transferrable from land to water, presenting a superior adaptation to the changing environments against commercial FT sensors. Soft, delicate, and reactive grasping enabled by tactile intelligence enhances the gripper's underwater interaction with improved reliability and robustness at a much-reduced cost, paving the path for learning-based intelligent grasping to support fundamental scientific discoveries in environmental and ocean research.Comment: 17 pages, 5 figures, 1 table, submitted to Advanced Intelligent Systems for revie

    Proprioceptive Learning with Soft Polyhedral Networks

    Full text link
    Proprioception is the "sixth sense" that detects limb postures with motor neurons. It requires a natural integration between the musculoskeletal systems and sensory receptors, which is challenging among modern robots that aim for lightweight, adaptive, and sensitive designs at a low cost. Here, we present the Soft Polyhedral Network with an embedded vision for physical interactions, capable of adaptive kinesthesia and viscoelastic proprioception by learning kinetic features. This design enables passive adaptations to omni-directional interactions, visually captured by a miniature high-speed motion tracking system embedded inside for proprioceptive learning. The results show that the soft network can infer real-time 6D forces and torques with accuracies of 0.25/0.24/0.35 N and 0.025/0.034/0.006 Nm in dynamic interactions. We also incorporate viscoelasticity in proprioception during static adaptation by adding a creep and relaxation modifier to refine the predicted results. The proposed soft network combines simplicity in design, omni-adaptation, and proprioceptive sensing with high accuracy, making it a versatile solution for robotics at a low cost with more than 1 million use cycles for tasks such as sensitive and competitive grasping, and touch-based geometry reconstruction. This study offers new insights into vision-based proprioception for soft robots in adaptive grasping, soft manipulation, and human-robot interaction.Comment: 20 pages, 10 figures, 2 tables, submitted to the International Journal of Robotics Research for revie

    ChainQueen: A Real-Time Differentiable Physical Simulator for Soft Robotics

    Full text link
    Physical simulators have been widely used in robot planning and control. Among them, differentiable simulators are particularly favored, as they can be incorporated into gradient-based optimization algorithms that are efficient in solving inverse problems such as optimal control and motion planning. Simulating deformable objects is, however, more challenging compared to rigid body dynamics. The underlying physical laws of deformable objects are more complex, and the resulting systems have orders of magnitude more degrees of freedom and therefore they are significantly more computationally expensive to simulate. Computing gradients with respect to physical design or controller parameters is typically even more computationally challenging. In this paper, we propose a real-time, differentiable hybrid Lagrangian-Eulerian physical simulator for deformable objects, ChainQueen, based on the Moving Least Squares Material Point Method (MLS-MPM). MLS-MPM can simulate deformable objects including contact and can be seamlessly incorporated into inference, control and co-design systems. We demonstrate that our simulator achieves high precision in both forward simulation and backward gradient computation. We have successfully employed it in a diverse set of control tasks for soft robots, including problems with nearly 3,000 decision variables.Comment: In submission to ICRA 2019. Supplemental Video: https://www.youtube.com/watch?v=4IWD4iGIsB4 Project Page: https://github.com/yuanming-hu/ChainQuee

    Defo-Net: Learning Body Deformation using Generative Adversarial Networks

    Get PDF
    Modelling the physical properties of everyday objects is a fundamental prerequisite for autonomous robots. We present a novel generative adversarial network (Defo-Net), able to predict body deformations under external forces from a single RGB-D image. The network is based on an invertible conditional Generative Adversarial Network (IcGAN) and is trained on a collection of different objects of interest generated by a physical finite element model simulator. Defo-Net inherits the generalisation properties of GANs. This means that the network is able to reconstruct the whole 3-D appearance of the object given a single depth view of the object and to generalise to unseen object configurations. Contrary to traditional finite element methods, our approach is fast enough to be used in real-time applications. We apply the network to the problem of safe and fast navigation of mobile robots carrying payloads over different obstacles and floor materials. Experimental results in real scenarios show how a robot equipped with an RGB-D camera can use the network to predict terrain deformations under different payload configurations and use this to avoid unsafe areas.Comment: In ICRA 201

    Unsupervised Sim-to-Real Adaptation of Soft Robot Proprioception using a Dual Cross-modal Autoencoder

    Full text link
    Soft robotics is a modern robotic paradigm for performing dexterous interactions with the surroundings via morphological flexibility. The desire for autonomous operation requires soft robots to be capable of proprioception and makes it necessary to devise a calibration process. These requirements can be greatly benefited by adopting numerical simulation for computational efficiency. However, the gap between the simulated and real domains limits the accurate, generalized application of the approach. Herein, we propose an unsupervised domain adaptation framework as a data-efficient, generalized alignment of these heterogeneous sensor domains. A dual cross-modal autoencoder was designed to match the sensor domains at a feature level without any extensive labeling process, facilitating the computationally efficient transferability to various tasks. As a proof-of-concept, the methodology was adopted to the famous soft robot design, a multigait soft robot, and two fundamental perception tasks for autonomous robot operation, involving high-fidelity shape estimation and collision detection. The resulting perception demonstrates the digital-twinned calibration process in both the simulated and real domains. The proposed design outperforms the existing prevalent benchmarks for both perception tasks. This unsupervised framework envisions a new approach to imparting embodied intelligence to soft robotic systems via blending simulation.Comment: 13 pages, 12 figure
    • …
    corecore