61,797 research outputs found

    A Model of the Ventral Visual System Based on Temporal Stability and Local Memory

    Get PDF
    The cerebral cortex is a remarkably homogeneous structure suggesting a rather generic computational machinery. Indeed, under a variety of conditions, functions attributed to specialized areas can be supported by other regions. However, a host of studies have laid out an ever more detailed map of functional cortical areas. This leaves us with the puzzle of whether different cortical areas are intrinsically specialized, or whether they differ mostly by their position in the processing hierarchy and their inputs but apply the same computational principles. Here we show that the computational principle of optimal stability of sensory representations combined with local memory gives rise to a hierarchy of processing stages resembling the ventral visual pathway when it is exposed to continuous natural stimuli. Early processing stages show receptive fields similar to those observed in the primary visual cortex. Subsequent stages are selective for increasingly complex configurations of local features, as observed in higher visual areas. The last stage of the model displays place fields as observed in entorhinal cortex and hippocampus. The results suggest that functionally heterogeneous cortical areas can be generated by only a few computational principles and highlight the importance of the variability of the input signals in forming functional specialization

    What are natural concepts? A design perspective

    Get PDF
    Conceptual spaces have become an increasingly popular modeling tool in cognitive psychology. The core idea of the conceptual spaces approach is that concepts can be represented as regions in similarity spaces. While it is generally acknowledged that not every region in such a space represents a natural concept, it is still an open question what distinguishes those regions that represent natural concepts from those that do not. The central claim of this paper is that natural concepts are represented by the cells of an optimally designed similarity space

    Sparse learning of stochastic dynamic equations

    Full text link
    With the rapid increase of available data for complex systems, there is great interest in the extraction of physically relevant information from massive datasets. Recently, a framework called Sparse Identification of Nonlinear Dynamics (SINDy) has been introduced to identify the governing equations of dynamical systems from simulation data. In this study, we extend SINDy to stochastic dynamical systems, which are frequently used to model biophysical processes. We prove the asymptotic correctness of stochastics SINDy in the infinite data limit, both in the original and projected variables. We discuss algorithms to solve the sparse regression problem arising from the practical implementation of SINDy, and show that cross validation is an essential tool to determine the right level of sparsity. We demonstrate the proposed methodology on two test systems, namely, the diffusion in a one-dimensional potential, and the projected dynamics of a two-dimensional diffusion process
    • …
    corecore