74,051 research outputs found

    Feature Extraction from Degree Distribution for Comparison and Analysis of Complex Networks

    Full text link
    The degree distribution is an important characteristic of complex networks. In many data analysis applications, the networks should be represented as fixed-length feature vectors and therefore the feature extraction from the degree distribution is a necessary step. Moreover, many applications need a similarity function for comparison of complex networks based on their degree distributions. Such a similarity measure has many applications including classification and clustering of network instances, evaluation of network sampling methods, anomaly detection, and study of epidemic dynamics. The existing methods are unable to effectively capture the similarity of degree distributions, particularly when the corresponding networks have different sizes. Based on our observations about the structure of the degree distributions in networks over time, we propose a feature extraction and a similarity function for the degree distributions in complex networks. We propose to calculate the feature values based on the mean and standard deviation of the node degrees in order to decrease the effect of the network size on the extracted features. The proposed method is evaluated using different artificial and real network datasets, and it outperforms the state of the art methods with respect to the accuracy of the distance function and the effectiveness of the extracted features.Comment: arXiv admin note: substantial text overlap with arXiv:1307.362

    Quantification and Comparison of Degree Distributions in Complex Networks

    Full text link
    The degree distribution is an important characteristic of complex networks. In many applications, quantification of degree distribution in the form of a fixed-length feature vector is a necessary step. On the other hand, we often need to compare the degree distribution of two given networks and extract the amount of similarity between the two distributions. In this paper, we propose a novel method for quantification of the degree distributions in complex networks. Based on this quantification method,a new distance function is also proposed for degree distributions, which captures the differences in the overall structure of the two given distributions. The proposed method is able to effectively compare networks even with different scales, and outperforms the state of the art methods considerably, with respect to the accuracy of the distance function

    Element-centric clustering comparison unifies overlaps and hierarchy

    Full text link
    Clustering is one of the most universal approaches for understanding complex data. A pivotal aspect of clustering analysis is quantitatively comparing clusterings; clustering comparison is the basis for many tasks such as clustering evaluation, consensus clustering, and tracking the temporal evolution of clusters. In particular, the extrinsic evaluation of clustering methods requires comparing the uncovered clusterings to planted clusterings or known metadata. Yet, as we demonstrate, existing clustering comparison measures have critical biases which undermine their usefulness, and no measure accommodates both overlapping and hierarchical clusterings. Here we unify the comparison of disjoint, overlapping, and hierarchically structured clusterings by proposing a new element-centric framework: elements are compared based on the relationships induced by the cluster structure, as opposed to the traditional cluster-centric philosophy. We demonstrate that, in contrast to standard clustering similarity measures, our framework does not suffer from critical biases and naturally provides unique insights into how the clusterings differ. We illustrate the strengths of our framework by revealing new insights into the organization of clusters in two applications: the improved classification of schizophrenia based on the overlapping and hierarchical community structure of fMRI brain networks, and the disentanglement of various social homophily factors in Facebook social networks. The universality of clustering suggests far-reaching impact of our framework throughout all areas of science

    Nine Quick Tips for Analyzing Network Data

    Get PDF
    These tips provide a quick and concentrated guide for beginners in the analysis of network data
    corecore