2,822 research outputs found

    The Difficulties of Learning Logic Programs with Cut

    Get PDF
    As real logic programmers normally use cut (!), an effective learning procedure for logic programs should be able to deal with it. Because the cut predicate has only a procedural meaning, clauses containing cut cannot be learned using an extensional evaluation method, as is done in most learning systems. On the other hand, searching a space of possible programs (instead of a space of independent clauses) is unfeasible. An alternative solution is to generate first a candidate base program which covers the positive examples, and then make it consistent by inserting cut where appropriate. The problem of learning programs with cut has not been investigated before and this seems to be a natural and reasonable approach. We generalize this scheme and investigate the difficulties that arise. Some of the major shortcomings are actually caused, in general, by the need for intensional evaluation. As a conclusion, the analysis of this paper suggests, on precise and technical grounds, that learning cut is difficult, and current induction techniques should probably be restricted to purely declarative logic languages.Comment: See http://www.jair.org/ for any accompanying file

    Learning First-Order Definitions of Functions

    Full text link
    First-order learning involves finding a clause-form definition of a relation from examples of the relation and relevant background information. In this paper, a particular first-order learning system is modified to customize it for finding definitions of functional relations. This restriction leads to faster learning times and, in some cases, to definitions that have higher predictive accuracy. Other first-order learning systems might benefit from similar specialization.Comment: See http://www.jair.org/ for any accompanying file

    Low Size-Complexity Inductive Logic Programming: The East-West Challenge Considered as a Problem in Cost-Sensitive Classification

    Get PDF
    The Inductive Logic Programming community has considered proof-complexity and model-complexity, but, until recently, size-complexity has received little attention. Recently a challenge was issued "to the international computing community" to discover low size-complexity Prolog programs for classifying trains. The challenge was based on a problem first proposed by Ryszard Michalski, 20 years ago. We interpreted the challenge as a problem in cost-sensitive classification and we applied a recently developed cost-sensitive classifier to the competition. Our algorithm was relatively successful (we won a prize). This paper presents our algorithm and analyzes the results of the competition
    • …
    corecore