7,579 research outputs found

    Learning an Approximate Model Predictive Controller with Guarantees

    Full text link
    A supervised learning framework is proposed to approximate a model predictive controller (MPC) with reduced computational complexity and guarantees on stability and constraint satisfaction. The framework can be used for a wide class of nonlinear systems. Any standard supervised learning technique (e.g. neural networks) can be employed to approximate the MPC from samples. In order to obtain closed-loop guarantees for the learned MPC, a robust MPC design is combined with statistical learning bounds. The MPC design ensures robustness to inaccurate inputs within given bounds, and Hoeffding's Inequality is used to validate that the learned MPC satisfies these bounds with high confidence. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the learned MPC. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem, for which we learn a neural network controller with guarantees.Comment: 6 pages, 3 figures, to appear in IEEE Control Systems Letter

    Learning an approximate model predictive controller with guarantees

    Get PDF
    In this thesis, a supervised learning framework to approximate a model predictive controller (MPC) with guarantees on stability and constraint satisfaction is proposed. The approximate controller has a reduced computational complexity in comparison to standard MPC which makes it possible to implement the resulting controller for systems with a high sampling rate on a cheap hardware. The framework can be used for a wide class of nonlinear systems. In order to obtain closed-loop guarantees for the approximate MPC, a robust MPC (RMPC) with robustness to bounded input disturbances is used which guarantees stability and constraint satisfaction if the input is approximated with a bound on the approximation error. The RMPC can be sampled offline and hence, any standard supervised learning technique can be used to approximate the MPC from samples. Neural networks (NN) are discussed in this thesis as one suitable approximation method. To guarantee a bound on the approximation error, statistical learning bounds are used. A method based on Hoeffding’s Inequality is proposed to validate that the approximate MPC satisfies these bounds with high confidence. This validation method is suited for any approximation method. The result is a closed-loop statistical guarantee on stability and constraint satisfaction for the approximated MPC. Within this thesis, an algorithm to obtain automatically an approximate controller is proposed. The proposed learning-based MPC framework is illustrated on a nonlinear benchmark problem for which we learn a neural network controller that guarantees stability and constraint satisfaction. The combination of robust control and statistical validation can also be used for other learning based control methods to obtain guarantees on stability and constraint satisfaction

    Differentiable Predictive Control with Safety Guarantees: A Control Barrier Function Approach

    Full text link
    We develop a novel form of differentiable predictive control (DPC) with safety and robustness guarantees based on control barrier functions. DPC is an unsupervised learning-based method for obtaining approximate solutions to explicit model predictive control (MPC) problems. In DPC, the predictive control policy parametrized by a neural network is optimized offline via direct policy gradients obtained by automatic differentiation of the MPC problem. The proposed approach exploits a new form of sampled-data barrier function to enforce offline and online safety requirements in DPC settings while only interrupting the neural network-based controller near the boundary of the safe set. The effectiveness of the proposed approach is demonstrated in simulation.Comment: Accepted to IEEE Conference on Decision and Control Conference 202

    Learning Robustness with Bounded Failure: An Iterative MPC Approach

    Full text link
    We propose an approach to design a Model Predictive Controller (MPC) for constrained Linear Time Invariant systems performing an iterative task. The system is subject to an additive disturbance, and the goal is to learn to satisfy state and input constraints robustly. Using disturbance measurements after each iteration, we construct Confidence Support sets, which contain the true support of the disturbance distribution with a given probability. As more data is collected, the Confidence Supports converge to the true support of the disturbance. This enables design of an MPC controller that avoids conservative estimate of the disturbance support, while simultaneously bounding the probability of constraint violation. The efficacy of the proposed approach is then demonstrated with a detailed numerical example.Comment: Added GitHub link to all source code

    Bayesian model predictive control: Efficient model exploration and regret bounds using posterior sampling

    Full text link
    Tight performance specifications in combination with operational constraints make model predictive control (MPC) the method of choice in various industries. As the performance of an MPC controller depends on a sufficiently accurate objective and prediction model of the process, a significant effort in the MPC design procedure is dedicated to modeling and identification. Driven by the increasing amount of available system data and advances in the field of machine learning, data-driven MPC techniques have been developed to facilitate the MPC controller design. While these methods are able to leverage available data, they typically do not provide principled mechanisms to automatically trade off exploitation of available data and exploration to improve and update the objective and prediction model. To this end, we present a learning-based MPC formulation using posterior sampling techniques, which provides finite-time regret bounds on the learning performance while being simple to implement using off-the-shelf MPC software and algorithms. The performance analysis of the method is based on posterior sampling theory and its practical efficiency is illustrated using a numerical example of a highly nonlinear dynamical car-trailer system
    • …
    corecore