4,450 research outputs found

    An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight Neural Networks

    Full text link
    Deep learning is formulated as a discrete-time optimal control problem. This allows one to characterize necessary conditions for optimality and develop training algorithms that do not rely on gradients with respect to the trainable parameters. In particular, we introduce the discrete-time method of successive approximations (MSA), which is based on the Pontryagin's maximum principle, for training neural networks. A rigorous error estimate for the discrete MSA is obtained, which sheds light on its dynamics and the means to stabilize the algorithm. The developed methods are applied to train, in a rather principled way, neural networks with weights that are constrained to take values in a discrete set. We obtain competitive performance and interestingly, very sparse weights in the case of ternary networks, which may be useful in model deployment in low-memory devices

    Extremely Low Bit Neural Network: Squeeze the Last Bit Out with ADMM

    Full text link
    Although deep learning models are highly effective for various learning tasks, their high computational costs prohibit the deployment to scenarios where either memory or computational resources are limited. In this paper, we focus on compressing and accelerating deep models with network weights represented by very small numbers of bits, referred to as extremely low bit neural network. We model this problem as a discretely constrained optimization problem. Borrowing the idea from Alternating Direction Method of Multipliers (ADMM), we decouple the continuous parameters from the discrete constraints of network, and cast the original hard problem into several subproblems. We propose to solve these subproblems using extragradient and iterative quantization algorithms that lead to considerably faster convergency compared to conventional optimization methods. Extensive experiments on image recognition and object detection verify that the proposed algorithm is more effective than state-of-the-art approaches when coming to extremely low bit neural network

    SinReQ: Generalized Sinusoidal Regularization for Low-Bitwidth Deep Quantized Training

    Full text link
    Deep quantization of neural networks (below eight bits) offers significant promise in reducing their compute and storage cost. Albeit alluring, without special techniques for training and optimization, deep quantization results in significant accuracy loss. To further mitigate this loss, we propose a novel sinusoidal regularization, called SinReQ1, for deep quantized training. SinReQ adds a periodic term to the original objective function of the underlying training algorithm. SinReQ exploits the periodicity, differentiability, and the desired convexity profile in sinusoidal functions to automatically propel weights towards values that are inherently closer to quantization levels. Since, this technique does not require invasive changes to the training procedure, SinReQ can harmoniously enhance quantized training algorithms. SinReQ offers generality and flexibility as it is not limited to a certain bitwidth or a uniform assignment of bitwidths across layers. We carry out experimentation using the AlexNet, CIFAR-10, ResNet-18, ResNet-20, SVHN, and VGG-11 DNNs with three to five bits for quantization and show the versatility of SinReQ in enhancing multiple quantized training algorithms, DoReFa [32] and WRPN [24]. Averaging across all the bit configurations shows that SinReQ closes the accuracy gap between these two techniques and the full-precision runs by 32.4% and 27.5%, respectively. That is improving the absolute accuracy of DoReFa and WRPN by 2.8% and 2.1%, respectively

    GXNOR-Net: Training deep neural networks with ternary weights and activations without full-precision memory under a unified discretization framework

    Full text link
    There is a pressing need to build an architecture that could subsume these networks under a unified framework that achieves both higher performance and less overhead. To this end, two fundamental issues are yet to be addressed. The first one is how to implement the back propagation when neuronal activations are discrete. The second one is how to remove the full-precision hidden weights in the training phase to break the bottlenecks of memory/computation consumption. To address the first issue, we present a multi-step neuronal activation discretization method and a derivative approximation technique that enable the implementing the back propagation algorithm on discrete DNNs. While for the second issue, we propose a discrete state transition (DST) methodology to constrain the weights in a discrete space without saving the hidden weights. Through this way, we build a unified framework that subsumes the binary or ternary networks as its special cases, and under which a heuristic algorithm is provided at the website https://github.com/AcrossV/Gated-XNOR. More particularly, we find that when both the weights and activations become ternary values, the DNNs can be reduced to sparse binary networks, termed as gated XNOR networks (GXNOR-Nets) since only the event of non-zero weight and non-zero activation enables the control gate to start the XNOR logic operations in the original binary networks. This promises the event-driven hardware design for efficient mobile intelligence. We achieve advanced performance compared with state-of-the-art algorithms. Furthermore, the computational sparsity and the number of states in the discrete space can be flexibly modified to make it suitable for various hardware platforms.Comment: 11 pages, 13 figure

    Resiliency of Deep Neural Networks under Quantization

    Full text link
    The complexity of deep neural network algorithms for hardware implementation can be much lowered by optimizing the word-length of weights and signals. Direct quantization of floating-point weights, however, does not show good performance when the number of bits assigned is small. Retraining of quantized networks has been developed to relieve this problem. In this work, the effects of retraining are analyzed for a feedforward deep neural network (FFDNN) and a convolutional neural network (CNN). The network complexity is controlled to know their effects on the resiliency of quantized networks by retraining. The complexity of the FFDNN is controlled by varying the unit size in each hidden layer and the number of layers, while that of the CNN is done by modifying the feature map configuration. We find that the performance gap between the floating-point and the retrain-based ternary (+1, 0, -1) weight neural networks exists with a fair amount in 'complexity limited' networks, but the discrepancy almost vanishes in fully complex networks whose capability is limited by the training data, rather than by the number of connections. This research shows that highly complex DNNs have the capability of absorbing the effects of severe weight quantization through retraining, but connection limited networks are less resilient. This paper also presents the effective compression ratio to guide the trade-off between the network size and the precision when the hardware resource is limited

    Learning Discrete Weights Using the Local Reparameterization Trick

    Full text link
    Recent breakthroughs in computer vision make use of large deep neural networks, utilizing the substantial speedup offered by GPUs. For applications running on limited hardware, however, high precision real-time processing can still be a challenge. One approach to solving this problem is training networks with binary or ternary weights, thus removing the need to calculate multiplications and significantly reducing memory size. In this work, we introduce LR-nets (Local reparameterization networks), a new method for training neural networks with discrete weights using stochastic parameters. We show how a simple modification to the local reparameterization trick, previously used to train Gaussian distributed weights, enables the training of discrete weights. Using the proposed training we test both binary and ternary models on MNIST, CIFAR-10 and ImageNet benchmarks and reach state-of-the-art results on most experiments.Comment: ICLR 201

    Deep Learning Sparse Ternary Projections for Compressed Sensing of Images

    Full text link
    Compressed sensing (CS) is a sampling theory that allows reconstruction of sparse (or compressible) signals from an incomplete number of measurements, using of a sensing mechanism implemented by an appropriate projection matrix. The CS theory is based on random Gaussian projection matrices, which satisfy recovery guarantees with high probability; however, sparse ternary {0, -1, +1} projections are more suitable for hardware implementation. In this paper, we present a deep learning approach to obtain very sparse ternary projections for compressed sensing. Our deep learning architecture jointly learns a pair of a projection matrix and a reconstruction operator in an end-to-end fashion. The experimental results on real images demonstrate the effectiveness of the proposed approach compared to state-of-the-art methods, with significant advantage in terms of complexity.Comment: To appear in GlobalSIP 201

    ProxQuant: Quantized Neural Networks via Proximal Operators

    Full text link
    To make deep neural networks feasible in resource-constrained environments (such as mobile devices), it is beneficial to quantize models by using low-precision weights. One common technique for quantizing neural networks is the straight-through gradient method, which enables back-propagation through the quantization mapping. Despite its empirical success, little is understood about why the straight-through gradient method works. Building upon a novel observation that the straight-through gradient method is in fact identical to the well-known Nesterov's dual-averaging algorithm on a quantization constrained optimization problem, we propose a more principled alternative approach, called ProxQuant, that formulates quantized network training as a regularized learning problem instead and optimizes it via the prox-gradient method. ProxQuant does back-propagation on the underlying full-precision vector and applies an efficient prox-operator in between stochastic gradient steps to encourage quantizedness. For quantizing ResNets and LSTMs, ProxQuant outperforms state-of-the-art results on binary quantization and is on par with state-of-the-art on multi-bit quantization. For binary quantization, our analysis shows both theoretically and experimentally that ProxQuant is more stable than the straight-through gradient method (i.e. BinaryConnect), challenging the indispensability of the straight-through gradient method and providing a powerful alternative

    Recent Advances in Convolutional Neural Network Acceleration

    Full text link
    In recent years, convolutional neural networks (CNNs) have shown great performance in various fields such as image classification, pattern recognition, and multi-media compression. Two of the feature properties, local connectivity and weight sharing, can reduce the number of parameters and increase processing speed during training and inference. However, as the dimension of data becomes higher and the CNN architecture becomes more complicated, the end-to-end approach or the combined manner of CNN is computationally intensive, which becomes limitation to CNN's further implementation. Therefore, it is necessary and urgent to implement CNN in a faster way. In this paper, we first summarize the acceleration methods that contribute to but not limited to CNN by reviewing a broad variety of research papers. We propose a taxonomy in terms of three levels, i.e.~structure level, algorithm level, and implementation level, for acceleration methods. We also analyze the acceleration methods in terms of CNN architecture compression, algorithm optimization, and hardware-based improvement. At last, we give a discussion on different perspectives of these acceleration and optimization methods within each level. The discussion shows that the methods in each level still have large exploration space. By incorporating such a wide range of disciplines, we expect to provide a comprehensive reference for researchers who are interested in CNN acceleration.Comment: submitted to Neurocomputin

    Low Precision Policy Distillation with Application to Low-Power, Real-time Sensation-Cognition-Action Loop with Neuromorphic Computing

    Full text link
    Low precision networks in the reinforcement learning (RL) setting are relatively unexplored because of the limitations of binary activations for function approximation. Here, in the discrete action ATARI domain, we demonstrate, for the first time, that low precision policy distillation from a high precision network provides a principled, practical way to train an RL agent. As an application, on 10 different ATARI games, we demonstrate real-time end-to-end game playing on low-power neuromorphic hardware by converting a sequence of game frames into discrete actions
    • …
    corecore