8 research outputs found

    Predicting loss given default

    Get PDF
    The topic of credit risk modeling has arguably become more important than ever before given the recent financial turmoil. Conform the international Basel accords on banking supervision, financial institutions need to prove that they hold sufficient capital to protect themselves and the financial system against unforeseen losses caused by defaulters. In order to determine the required minimal capital, empirical models can be used to predict the loss given default (LGD). The main objectives of this doctoral thesis are to obtain new insights in how to develop and validate predictive LGD models through regression techniques. The first part reveals how good real-life LGD can be predicted and which techniques are best. Its value is in particular in the use of default data from six major international financial institutions and the evaluation of twenty-four different regression techniques, making this the largest LGD benchmarking study so far. Nonetheless, it is found that the resulting models have limited predictive performance no matter what technique is employed, although non-linear techniques yield higher performances than traditional linear techniques. The results of this study strongly advocate the need for financial institutions to invest in the collection of more relevant data. The second part introduces a novel validation framework to backtest the predictive performance of LGD models. The proposed key idea is to assess the test performance relative to the performance during model development with statistical hypothesis tests based on commonly used LGD predictive performance metrics. The value of this framework comprises a solution to the lack of reference values to determine acceptable performance and to possible performance bias caused by too little data. This study offers financial institutions a practical tool to prove the validity of their LGD models and corresponding predictions as required by national regulators. The third part uncovers whether the optimal regression technique can be selected based on typical characteristics of the data. Its value is especially in the use of the recently introduced concept of datasetoids which allows the generation of thousands of datasets representing real-life relations, thereby circumventing the scarcity problem of publicly available real-life datasets, making this the largest meta learning regression study so far. It is found that typical data based characteristics do not play any role in the performance of a technique. Nonetheless, it is proven that algorithm based characteristics are good drivers to select the optimal technique. This thesis may be valuable for any financial institution implementing credit risk models to determine their minimal capital requirements compliant with the Basel accords. The new insights provided in this thesis may support financial institutions to develop and validate their own LGD models. The results of the benchmarking and meta learning study can help financial institutions to select the appropriate regression technique to model their LGD portfolio's. In addition, the proposed backtesting framework, together with the benchmarking results can be employed to support the validation of the internally developed LGD models

    Cost sensitive meta-learning

    Get PDF
    Classification is one of the primary tasks of data mining and aims to assign a class label to unseen examples by using a model learned from a training dataset. Most of the accepted classifiers are designed to minimize the error rate but in practice data mining involves costs such as the cost of getting the data, and cost of making an error. Hence the following question arises:Among all the available classification algorithms, and in considering a specific type of data and cost, which is the best algorithm for my problem?It is well known to the machine learning community that there is no single algorithm that performs best for all domains. This observation motivates the need to develop an “algorithm selector” which is the work of automating the process of choosing between different algorithms given a specific domain of application. Thus, this research develops a new meta-learning system for recommending cost-sensitive classification methods. The system is based on the idea of applying machine learning to discover knowledge about the performance of different data mining algorithms. It includes components that repeatedly apply different classification methods on data sets and measuring their performance. The characteristics of the data sets, combined with the algorithm and the performance provide the training examples. A decision tree algorithm is applied on the training examples to induce the knowledge which can then be applied to recommend algorithms for new data sets, and then active learning is used to automate the ability to choose the most informative data set that should enter the learning process.This thesis makes contributions to both the fields of meta-learning, and cost sensitive learning in that it develops a new meta-learning approach for recommending cost-sensitive methods. Although, meta-learning is not new, the task of accelerating the learning process remains an open problem, and the thesis develops a novel active learning strategy based on clustering that gives the learner the ability to choose which data to learn from and accordingly, speed up the meta-learning process.Both the meta-learning system and use of active learning are implemented in the WEKA system and evaluated by applying them on different datasets and comparing the results with existing studies available in the literature. The results show that the meta-learning system developed produces better results than METAL, a well-known meta-learning system and that the use of clustering and active learning has a positive effect on accelerating the meta-learning process, where all tested datasets show a decrement of error rate prediction by 75 %

    Metalearning

    Get PDF
    This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. ; Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence

    Metalearning

    Get PDF
    This open access book as one of the fastest-growing areas of research in machine learning, metalearning studies principled methods to obtain efficient models and solutions by adapting machine learning and data mining processes. This adaptation usually exploits information from past experience on other tasks and the adaptive processes can involve machine learning approaches. As a related area to metalearning and a hot topic currently, automated machine learning (AutoML) is concerned with automating the machine learning processes. Metalearning and AutoML can help AI learn to control the application of different learning methods and acquire new solutions faster without unnecessary interventions from the user. This book offers a comprehensive and thorough introduction to almost all aspects of metalearning and AutoML, covering the basic concepts and architecture, evaluation, datasets, hyperparameter optimization, ensembles and workflows, and also how this knowledge can be used to select, combine, compose, adapt and configure both algorithms and models to yield faster and better solutions to data mining and data science problems. It can thus help developers to develop systems that can improve themselves through experience. This book is a substantial update of the first edition published in 2009. It includes 18 chapters, more than twice as much as the previous version. This enabled the authors to cover the most relevant topics in more depth and incorporate the overview of recent research in the respective area. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining, data science and artificial intelligence. ; Metalearning is the study of principled methods that exploit metaknowledge to obtain efficient models and solutions by adapting machine learning and data mining processes. While the variety of machine learning and data mining techniques now available can, in principle, provide good model solutions, a methodology is still needed to guide the search for the most appropriate model in an efficient way. Metalearning provides one such methodology that allows systems to become more effective through experience. This book discusses several approaches to obtaining knowledge concerning the performance of machine learning and data mining algorithms. It shows how this knowledge can be reused to select, combine, compose and adapt both algorithms and models to yield faster, more effective solutions to data mining problems. It can thus help developers improve their algorithms and also develop learning systems that can improve themselves. The book will be of interest to researchers and graduate students in the areas of machine learning, data mining and artificial intelligence

    New Probabilistic Graphical Models and Meta-Learning Approaches for Hierarchical Classification, with Applications in Bioinformatics and Ageing

    Get PDF
    This interdisciplinary work proposes new hierarchical classification algorithms and evaluates them on biological datasets, and specifically on ageing-related datasets. Hierarchical classification is a type of classification task where the classes to be predicted are organized into a hierarchical structure. The focus on ageing is justified by the increasing impact that ageing-related diseases have on the human population and by the increasing amount of freely available ageing-related data. The main contributions of this thesis are as follows. First, we improve the running time of a previously proposed hierarchical classification algorithm based on an extension of the well-known Naive Bayes classification algorithm. We show that our modification greatly improves the runtime of the hierarchical classification algorithm, maintaining its predictive performance. We also propose four new hierarchical classification algorithms. The focus on hierarchical classification algorithms and their evaluation on biological data is justified as the class labels of biological data are commonly organized into class hierarchies. Two of our four new hierarchical classification algorithms - the "Hierarchical Dependence Network" (HDN) and the "Hierarchical Dependence Network algorithm based on finding non-Hierarchically related Predictive Classes'' (HDN-nHPC) - are based on Dependence Networks, a relatively new type of probabilistic graphical model that has not yet received a lot of attention from the classification community. The other two hierarchical classification algorithms we proposed are hybrid algorithms that use the hierarchical classification models produced by the Predictive Clustering Tree (PCT) algorithm. One of the hybrids combines the models produced by the PCT algorithm and a Local Hierarchical Classification (LHC) algorithm (which basically induces a local model for each class in the hierarchy). The other hybrid combines the models produced by the PCT and HDN algorithms. We have tested our four proposed algorithms and four other commonly used hierarchical classification algorithms on 42 hierarchical classification datasets. 20 of these datasets were created by us and are freely available for researchers. We have concluded that, for one out of the three hierarchical predictive accuracy measures used in our experiments, one of our four new algorithms (the HDN-nHPC algorithm) outperforms all other seven algorithms in terms of average rank across the 42 hierarchical classification datasets. We have also proposed the first meta-learning approach for hierarchical classification problems. In meta-learning, each meta-instance represents a dataset, meta-features represent dataset properties, and meta-classes represent the best classification algorithm for the corresponding dataset (meta-instance). Hence, meta-learning techniques for classification use the predictive performance of some candidate classification algorithms in previously tested datasets, and dataset descriptors (the meta-features), to infer the performance of those candidate classification algorithms in new datasets, given the meta-features of those new datasets. The predictions of our meta-learning system can be used as a guide to choose which hierarchical classification algorithm (out of a set of candidate ones) to use on a new dataset, without the need for time-consuming trial and error experiments with those candidate algorithms. This is particularly important for hierarchical classification problems, as the training time of hierarchical classification algorithms tends to be much greater than the training time of 'flat' classification algorithms. This increased training time is mainly due to the typically much greater number of class labels that annotate the instances of hierarchical classification problems. We have tested the predictive power of our meta-learning system and interpreted some generated meta-models. We have concluded that our meta-learning system had good predictive performance when compared to other baseline meta-learning approaches. We have also concluded that the meta-rules generated by our meta-learning system were useful to identify dataset characteristics to assist the choice of hierarchical classification algorithm. Finally, we have reviewed the current practice of applying supervised machine learning (classification and regression) algorithms to study the biology of ageing. This review discusses the main findings of such algorithms, in the context of the ageing biology literature. We have also interpreted some of the hierarchical classification models generated in our experiments. Both the above literature review and the interpretation of some models were performed in collaboration with an ageing expert, in order to extract relevant information for ageing research

    Learning algorithm selection for comprehensible regression analysis using datasetoids

    No full text
    Data mining tools often include a workbench of algorithms to model a given dataset but lack sufficient guidance to select the most accurate algorithm given a certain dataset. The best algorithm is not known in advance and no single model format is superior for all datasets. Evaluating a number of candidate algorithms on large datasets to determine the most accurate model is however a computational burden. An alternative and more time efficient way is to select the optimal algorithm based on the nature of the dataset. In this meta-learning study, it is explored to what degree dataset characteristics can help identify which regression/estimation algorithm will best fit a given dataset. We chose to focus on comprehensible `white-box' techniques in particular (i.e. linear, spline, tree, linear tree or spline tree) as those are of particular interest in many real-life estimation settings. A large scale experiment with more than thousand so called datasetoids representing various real-life dependencies is conducted to discover possible relations. It is found that algorithm based characteristics such as sampling landmarks are major drivers for successfully selecting the most accurate algorithm. Further, it is found that data based characteristics such as the length, dimensionality and composition of the independent variables, or the asymmetry and dispersion of the dependent variable appear to contribute little once landmarks are included in the meta-model
    corecore