2,619 research outputs found

    Multitask Learning with CTC and Segmental CRF for Speech Recognition

    Full text link
    Segmental conditional random fields (SCRFs) and connectionist temporal classification (CTC) are two sequence labeling methods used for end-to-end training of speech recognition models. Both models define a transcription probability by marginalizing decisions about latent segmentation alternatives to derive a sequence probability: the former uses a globally normalized joint model of segment labels and durations, and the latter classifies each frame as either an output symbol or a "continuation" of the previous label. In this paper, we train a recognition model by optimizing an interpolation between the SCRF and CTC losses, where the same recurrent neural network (RNN) encoder is used for feature extraction for both outputs. We find that this multitask objective improves recognition accuracy when decoding with either the SCRF or CTC models. Additionally, we show that CTC can also be used to pretrain the RNN encoder, which improves the convergence rate when learning the joint model.Comment: 5 pages, 2 figures, camera ready version at Interspeech 201

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    Improved training for online end-to-end speech recognition systems

    Full text link
    Achieving high accuracy with end-to-end speech recognizers requires careful parameter initialization prior to training. Otherwise, the networks may fail to find a good local optimum. This is particularly true for online networks, such as unidirectional LSTMs. Currently, the best strategy to train such systems is to bootstrap the training from a tied-triphone system. However, this is time consuming, and more importantly, is impossible for languages without a high-quality pronunciation lexicon. In this work, we propose an initialization strategy that uses teacher-student learning to transfer knowledge from a large, well-trained, offline end-to-end speech recognition model to an online end-to-end model, eliminating the need for a lexicon or any other linguistic resources. We also explore curriculum learning and label smoothing and show how they can be combined with the proposed teacher-student learning for further improvements. We evaluate our methods on a Microsoft Cortana personal assistant task and show that the proposed method results in a 19 % relative improvement in word error rate compared to a randomly-initialized baseline system.Comment: Interspeech 201
    corecore