187 research outputs found

    Learning Horn Envelopes via Queries from Large Language Models

    Full text link
    We investigate an approach for extracting knowledge from trained neural networks based on Angluin's exact learning model with membership and equivalence queries to an oracle. In this approach, the oracle is a trained neural network. We consider Angluin's classical algorithm for learning Horn theories and study the necessary changes to make it applicable to learn from neural networks. In particular, we have to consider that trained neural networks may not behave as Horn oracles, meaning that their underlying target theory may not be Horn. We propose a new algorithm that aims at extracting the "tightest Horn approximation" of the target theory and that is guaranteed to terminate in exponential time (in the worst case) and in polynomial time if the target has polynomially many non-Horn examples. To showcase the applicability of the approach, we perform experiments on pre-trained language models and extract rules that expose occupation-based gender biases.Comment: 35 pages, 2 figures; manuscript accepted for publication in the International Journal of Approximate Reasoning (IJAR

    Learning Possibilistic Logic Theories

    Get PDF
    Vi tar opp problemet med å lære tolkbare maskinlæringsmodeller fra usikker og manglende informasjon. Vi utvikler først en ny dyplæringsarkitektur, RIDDLE: Rule InDuction with Deep LEarning (regelinduksjon med dyp læring), basert på egenskapene til mulighetsteori. Med eksperimentelle resultater og sammenligning med FURIA, en eksisterende moderne metode for regelinduksjon, er RIDDLE en lovende regelinduksjonsalgoritme for å finne regler fra data. Deretter undersøker vi læringsoppgaven formelt ved å identifisere regler med konfidensgrad knyttet til dem i exact learning-modellen. Vi definerer formelt teoretiske rammer og viser forhold som må holde for å garantere at en læringsalgoritme vil identifisere reglene som holder i et domene. Til slutt utvikler vi en algoritme som lærer regler med tilhørende konfidensverdier i exact learning-modellen. Vi foreslår også en teknikk for å simulere spørringer i exact learning-modellen fra data. Eksperimenter viser oppmuntrende resultater for å lære et sett med regler som tilnærmer reglene som er kodet i data.We address the problem of learning interpretable machine learning models from uncertain and missing information. We first develop a novel deep learning architecture, named RIDDLE (Rule InDuction with Deep LEarning), based on properties of possibility theory. With experimental results and comparison with FURIA, a state of the art method, RIDDLE is a promising rule induction algorithm for finding rules from data. We then formally investigate the learning task of identifying rules with confidence degree associated to them in the exact learning model. We formally define theoretical frameworks and show conditions that must hold to guarantee that a learning algorithm will identify the rules that hold in a domain. Finally, we develop an algorithm that learns rules with associated confidence values in the exact learning model. We also propose a technique to simulate queries in the exact learning model from data. Experiments show encouraging results to learn a set of rules that approximate rules encoded in data.Doktorgradsavhandlin

    Foundations of Fuzzy Logic and Semantic Web Languages

    Get PDF
    This book is the first to combine coverage of fuzzy logic and Semantic Web languages. It provides in-depth insight into fuzzy Semantic Web languages for non-fuzzy set theory and fuzzy logic experts. It also helps researchers of non-Semantic Web languages get a better understanding of the theoretical fundamentals of Semantic Web languages. The first part of the book covers all the theoretical and logical aspects of classical (two-valued) Semantic Web languages. The second part explains how to generalize these languages to cope with fuzzy set theory and fuzzy logic

    The use of data-mining for the automatic formation of tactics

    Get PDF
    This paper discusses the usse of data-mining for the automatic formation of tactics. It was presented at the Workshop on Computer-Supported Mathematical Theory Development held at IJCAR in 2004. The aim of this project is to evaluate the applicability of data-mining techniques to the automatic formation of tactics from large corpuses of proofs. We data-mine information from large proof corpuses to find commonly occurring patterns. These patterns are then evolved into tactics using genetic programming techniques

    Foundations of Fuzzy Logic and Semantic Web Languages

    Get PDF
    This book is the first to combine coverage of fuzzy logic and Semantic Web languages. It provides in-depth insight into fuzzy Semantic Web languages for non-fuzzy set theory and fuzzy logic experts. It also helps researchers of non-Semantic Web languages get a better understanding of the theoretical fundamentals of Semantic Web languages. The first part of the book covers all the theoretical and logical aspects of classical (two-valued) Semantic Web languages. The second part explains how to generalize these languages to cope with fuzzy set theory and fuzzy logic

    DFKI publications : the first four years ; 1990 - 1993

    Get PDF

    Achieving New Upper Bounds for the Hypergraph Duality Problem through Logic

    Get PDF
    The hypergraph duality problem DUAL is defined as follows: given two simple hypergraphs G\mathcal{G} and H\mathcal{H}, decide whether H\mathcal{H} consists precisely of all minimal transversals of G\mathcal{G} (in which case we say that G\mathcal{G} is the dual of H\mathcal{H}). This problem is equivalent to deciding whether two given non-redundant monotone DNFs are dual. It is known that non-DUAL, the complementary problem to DUAL, is in GC(log2n,PTIME)\mathrm{GC}(\log^2 n,\mathrm{PTIME}), where GC(f(n),C)\mathrm{GC}(f(n),\mathcal{C}) denotes the complexity class of all problems that after a nondeterministic guess of O(f(n))O(f(n)) bits can be decided (checked) within complexity class C\mathcal{C}. It was conjectured that non-DUAL is in GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). In this paper we prove this conjecture and actually place the non-DUAL problem into the complexity class GC(log2n,TC0)\mathrm{GC}(\log^2 n,\mathrm{TC}^0) which is a subclass of GC(log2n,LOGSPACE)\mathrm{GC}(\log^2 n,\mathrm{LOGSPACE}). We here refer to the logtime-uniform version of TC0\mathrm{TC}^0, which corresponds to FO(COUNT)\mathrm{FO(COUNT)}, i.e., first order logic augmented by counting quantifiers. We achieve the latter bound in two steps. First, based on existing problem decomposition methods, we develop a new nondeterministic algorithm for non-DUAL that requires to guess O(log2n)O(\log^2 n) bits. We then proceed by a logical analysis of this algorithm, allowing us to formulate its deterministic part in FO(COUNT)\mathrm{FO(COUNT)}. From this result, by the well known inclusion TC0LOGSPACE\mathrm{TC}^0\subseteq\mathrm{LOGSPACE}, it follows that DUAL belongs also to DSPACE[log2n]\mathrm{DSPACE}[\log^2 n]. Finally, by exploiting the principles on which the proposed nondeterministic algorithm is based, we devise a deterministic algorithm that, given two hypergraphs G\mathcal{G} and H\mathcal{H}, computes in quadratic logspace a transversal of G\mathcal{G} missing in H\mathcal{H}.Comment: Restructured the presentation in order to be the extended version of a paper that will shortly appear in SIAM Journal on Computin

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Computer Aided Verification

    Get PDF
    This open access two-volume set LNCS 10980 and 10981 constitutes the refereed proceedings of the 30th International Conference on Computer Aided Verification, CAV 2018, held in Oxford, UK, in July 2018. The 52 full and 13 tool papers presented together with 3 invited papers and 2 tutorials were carefully reviewed and selected from 215 submissions. The papers cover a wide range of topics and techniques, from algorithmic and logical foundations of verification to practical applications in distributed, networked, cyber-physical, and autonomous systems. They are organized in topical sections on model checking, program analysis using polyhedra, synthesis, learning, runtime verification, hybrid and timed systems, tools, probabilistic systems, static analysis, theory and security, SAT, SMT and decisions procedures, concurrency, and CPS, hardware, industrial applications

    Object-oriented data mining

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore