10,449 research outputs found

    Learning to Associate Words and Images Using a Large-scale Graph

    Full text link
    We develop an approach for unsupervised learning of associations between co-occurring perceptual events using a large graph. We applied this approach to successfully solve the image captcha of China's railroad system. The approach is based on the principle of suspicious coincidence. In this particular problem, a user is presented with a deformed picture of a Chinese phrase and eight low-resolution images. They must quickly select the relevant images in order to purchase their train tickets. This problem presents several challenges: (1) the teaching labels for both the Chinese phrases and the images were not available for supervised learning, (2) no pre-trained deep convolutional neural networks are available for recognizing these Chinese phrases or the presented images, and (3) each captcha must be solved within a few seconds. We collected 2.6 million captchas, with 2.6 million deformed Chinese phrases and over 21 million images. From these data, we constructed an association graph, composed of over 6 million vertices, and linked these vertices based on co-occurrence information and feature similarity between pairs of images. We then trained a deep convolutional neural network to learn a projection of the Chinese phrases onto a 230-dimensional latent space. Using label propagation, we computed the likelihood of each of the eight images conditioned on the latent space projection of the deformed phrase for each captcha. The resulting system solved captchas with 77% accuracy in 2 seconds on average. Our work, in answering this practical challenge, illustrates the power of this class of unsupervised association learning techniques, which may be related to the brain's general strategy for associating language stimuli with visual objects on the principle of suspicious coincidence.Comment: 8 pages, 7 figures, 14th Conference on Computer and Robot Vision 201

    GRASS: Generative Recursive Autoencoders for Shape Structures

    Full text link
    We introduce a novel neural network architecture for encoding and synthesis of 3D shapes, particularly their structures. Our key insight is that 3D shapes are effectively characterized by their hierarchical organization of parts, which reflects fundamental intra-shape relationships such as adjacency and symmetry. We develop a recursive neural net (RvNN) based autoencoder to map a flat, unlabeled, arbitrary part layout to a compact code. The code effectively captures hierarchical structures of man-made 3D objects of varying structural complexities despite being fixed-dimensional: an associated decoder maps a code back to a full hierarchy. The learned bidirectional mapping is further tuned using an adversarial setup to yield a generative model of plausible structures, from which novel structures can be sampled. Finally, our structure synthesis framework is augmented by a second trained module that produces fine-grained part geometry, conditioned on global and local structural context, leading to a full generative pipeline for 3D shapes. We demonstrate that without supervision, our network learns meaningful structural hierarchies adhering to perceptual grouping principles, produces compact codes which enable applications such as shape classification and partial matching, and supports shape synthesis and interpolation with significant variations in topology and geometry.Comment: Corresponding author: Kai Xu ([email protected]

    Empiricism without Magic: Transformational Abstraction in Deep Convolutional Neural Networks

    Get PDF
    In artificial intelligence, recent research has demonstrated the remarkable potential of Deep Convolutional Neural Networks (DCNNs), which seem to exceed state-of-the-art performance in new domains weekly, especially on the sorts of very difficult perceptual discrimination tasks that skeptics thought would remain beyond the reach of artificial intelligence. However, it has proven difficult to explain why DCNNs perform so well. In philosophy of mind, empiricists have long suggested that complex cognition is based on information derived from sensory experience, often appealing to a faculty of abstraction. Rationalists have frequently complained, however, that empiricists never adequately explained how this faculty of abstraction actually works. In this paper, I tie these two questions together, to the mutual benefit of both disciplines. I argue that the architectural features that distinguish DCNNs from earlier neural networks allow them to implement a form of hierarchical processing that I call “transformational abstraction”. Transformational abstraction iteratively converts sensory-based representations of category exemplars into new formats that are increasingly tolerant to “nuisance variation” in input. Reflecting upon the way that DCNNs leverage a combination of linear and non-linear processing to efficiently accomplish this feat allows us to understand how the brain is capable of bi-directional travel between exemplars and abstractions, addressing longstanding problems in empiricist philosophy of mind. I end by considering the prospects for future research on DCNNs, arguing that rather than simply implementing 80s connectionism with more brute-force computation, transformational abstraction counts as a qualitatively distinct form of processing ripe with philosophical and psychological significance, because it is significantly better suited to depict the generic mechanism responsible for this important kind of psychological processing in the brain
    corecore