559 research outputs found

    Forced Oscillation Source Location via Multivariate Time Series Classification

    Full text link
    Precisely locating low-frequency oscillation sources is the prerequisite of suppressing sustained oscillation, which is an essential guarantee for the secure and stable operation of power grids. Using synchrophasor measurements, a machine learning method is proposed to locate the source of forced oscillation in power systems. Rotor angle and active power of each power plant are utilized to construct multivariate time series (MTS). Applying Mahalanobis distance metric and dynamic time warping, the distance between MTS with different phases or lengths can be appropriately measured. The obtained distance metric, representing characteristics during the transient phase of forced oscillation under different disturbance sources, is used for offline classifier training and online matching to locate the disturbance source. Simulation results using the four-machine two-area system and IEEE 39-bus system indicate that the proposed location method can identify the power system forced oscillation source online with high accuracy.Comment: 5 pages, 3 figures. Accepted by 2018 IEEE/PES Transmission and Distribution Conferenc

    Metric Learning for Temporal Sequence Alignment

    Get PDF
    In this paper, we propose to learn a Mahalanobis distance to perform alignment of multivariate time series. The learning examples for this task are time series for which the true alignment is known. We cast the alignment problem as a structured prediction task, and propose realistic losses between alignments for which the optimization is tractable. We provide experiments on real data in the audio to audio context, where we show that the learning of a similarity measure leads to improvements in the performance of the alignment task. We also propose to use this metric learning framework to perform feature selection and, from basic audio features, build a combination of these with better performance for the alignment

    Implementation and Evaluation of Acoustic Distance Measures for Syllables

    Get PDF
    Munier C. Implementation and Evaluation of Acoustic Distance Measures for Syllables. Bielefeld (Germany): Bielefeld University; 2011.In dieser Arbeit werden verschiedene akustische Ähnlichkeitsmaße für Silben motiviert und anschließend evaluiert. Der Mahalanobisabstand als lokales Abstandsmaß für einen Dynamic-Time-Warping-Ansatz zum Messen von akustischen Abständen hat die Fähigkeit, Silben zu unterscheiden. Als solcher erlaubt er die Klassifizierung von Silben mit einer Genauigkeit, die für die Klassifizierung von kleinen akustischen Einheiten üblich ist (60 Prozent für eine Nächster-Nachbar-Klassifizierung auf einem Satz von zehn Silben für Samples eines einzelnen Sprechers). Dieses Maß kann durch verschiedene Techniken verbessert werden, die jedoch seine Ausführungsgeschwindigkeit verschlechtern (Benutzen von mehr Mischverteilungskomponenten für die Schätzung von Kovarianzen auf einer Gaußschen Mischverteilung, Benutzen von voll besetzten Kovarianzmatrizen anstelle von diagonalen Kovarianzmatrizen). Durch experimentelle Evaluierung wird deutlich, dass ein gut funktionierender Algorithmus zur Silbensegmentierung, welcher eine akkurate Schätzung von Silbengrenzen erlaubt, für die korrekte Berechnung von akustischen Abständen durch die in dieser Arbeit entwickelten Ähnlichkeitsmaße unabdingbar ist. Weitere Ansätze für Ähnlichkeitsmaße, die durch ihre Anwendung in der Timbre-Klassifizierung von Musikstücken motiviert sind, zeigen keine adäquate Fähigkeit zur Silbenunterscheidung.In this work, several acoustic similarity measures for syllables are motivated and successively evaluated. The Mahalanobis distance as local distance measure for a dynamic time warping approach to measure acoustic distances is a measure that is able to discriminate syllables and thus allows for syllable classification with an accuracy that is common to the classification of small acoustic units (60 percent for a nearest neighbor classification of a set of ten syllables using samples of a single speaker). This measure can be improved using several techniques that however impair the execution speed of the distance measure (usage of more mixture density components for the estimation of covariances from a Gaussian mixture model, usage of fully occupied covariance matrices instead of diagonal covariance matrices). Through experimental evaluation it becomes evident that a decently working syllable segmentation algorithm allowing for accurate syllable border estimations is essential to the correct computation of acoustic distances by the similarity measures developed in this work. Further approaches for similarity measures which are motivated by their usage in timbre classification of music pieces do not show adequate syllable discrimination abilities

    Machine learning for multivariate time series with the R package mlmts

    Get PDF
    Financiado para publicación en acceso aberto: Universidade da Coruña/CISUG[Abstract]: Time series data are ubiquitous nowadays. Whereas most of the literature on the topic deals with univariate time series, multivariate time series have typically received much less attention. However, the development of machine learning algorithms for the latter objects has substantially increased in recent years. The R package mlmts attempts to provide a set of widespread data mining techniques for multivariate series. Several functions allowing the execution of clustering, classification, outlier detection and forecasting methods, among others, are included in the package. mlmts also incorporates a collection of multivariate time series datasets often used to test the performance of new classification algorithms. The main characteristics of the package are described and its use is illustrated through various examples. Practitioners from a wide variety of fields could benefit from the general framework provided by mlmts.This research has been supported by the Ministerio de Economía y Competitividad (MINECO) grants MTM2017-82724-R and PID2020-113578RB-100, the Xunta de Galicia (Grupos de Referencia Competitiva ED431C-2020-14), and the Centro de Investigación del Sistema Universitario de Galicia, “CITIC” grant ED431G 2019/01; all of them through the European Regional Development Fund (ERDF). This work has received funding for open access charge by University of A Coruña/CISUG.Xunta de Galicia; ED431C-2020-14Xunta de Galicia; ED431G 2019/0

    Novelty Detection And Cluster Analysis In Time Series Data Using Variational Autoencoder Feature Maps

    Get PDF
    The identification of atypical events and anomalies in complex data systems is an essential yet challenging task. The dynamic nature of these systems produces huge volumes of data that is often heterogeneous, and the failure to account for this will impede the detection of anomalies. Time series data encompass these issues and its high dimensional nature intensifies these challenges. This research presents a framework for the identification of anomalies in temporal data. A comparative analysis of Centroid, Density and Neural Network-based clustering techniques was performed and their scalability was assessed. This facilitated the development of a new algorithm called the Variational Autoencoder Feature Map (VAEFM) which is an ensemble method that is based on Kohonen’s Self-Organizing Maps (SOM) and Variational Autoencoders. The VAEFM is an unsupervised learning algorithm that models the distribution of temporal data without making a priori assumptions. It incorporates principles of novelty detection to enhance the representational capacity of SOMs neurons, which improves their ability to generalize with novel data. The VAEFM technique was demonstrated on a dataset of accumulated aircraft sensor recordings, to detect atypical events that transpired in the approach phase of flight. This is a proactive means of accident prevention and is therefore advantageous to the Aviation industry. Furthermore, accumulated aircraft data presents big data challenges, which requires scalable analytical solutions. The results indicated that VAEFM successfully identified temporal dependencies in the flight data and produced several clusters and outliers. It analyzed over 2500 flights in under 5 minutes and identified 12 clusters, two of which contained stabilized approaches. The remaining comprised of aborted approaches, excessively high/fast descent patterns and other contributory factors for unstabilized approaches. Outliers were detected which revealed oscillations in aircraft trajectories; some of which would have a lower detection rate using traditional flight safety analytical techniques. The results further indicated that VAEFM facilitates large-scale analysis and its scaling efficiency was demonstrated on a High Performance Computing System, by using an increased number of processors, where it achieved an average speedup of 70%
    corecore