65 research outputs found

    ์ƒ๋ฌผํ•™์  ์‚ฌ์ „ ์ง€์‹์„ ํ™œ์šฉํ•œ ๊ณ ์ฐจ์›์˜ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ์ปดํ“จํ„ฐ ๊ณตํ•™์  ์ ‘๊ทผ ๋ฐฉ๋ฒ•

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ปดํ“จํ„ฐ๊ณตํ•™๋ถ€, 2021.8. ๊น€์„ .์„ธํฌ๊ฐ€ ์–ด๋–ป๊ฒŒ ๊ธฐ๋Šฅํ•˜๊ณ  ์™ธ๋ถ€ ์ž๊ทน์— ๋ฐ˜์‘ํ•˜๋Š”์ง€ ์ดํ•ดํ•˜๋Š” ๊ฒƒ์€ ์ƒ๋ฌผํ•™, ์˜ํ•™์—์„œ ๊ฐ€์žฅ ์ค‘์š”ํ•œ ๊ด€์‹ฌ์‚ฌ ์ค‘ ํ•˜๋‚˜์ด๋‹ค. ๊ธฐ์ˆ ์˜ ๋ฐœ์ „์œผ๋กœ ๊ณผํ•™์ž๋“ค์€ ๋‹จ์ผ ์ƒ๋ฌผํ•™์  ์‹คํ—˜์œผ๋กœ ์„ธํฌ์˜ ๋ณ€ํ™”์š”์ธ๋“ค์„ ์‰ฝ๊ฒŒ ์ธก์ •ํ•  ์ˆ˜ ์žˆ๊ฒŒ ๋˜์—ˆ๋‹ค. ์ฃผ๋ชฉํ• ๋งŒํ•œ ์˜ˆ์‹œ๋กœ ๊ฒŒ๋†ˆ ์‹œํ€€์‹ฑ, ์œ ์ „์ž ๋ฐœํ˜„๋Ÿ‰ ์ธก์ •, ์œ ์ „์ž ๋ฐœํ˜„์„ ์กฐ์ ˆํ•˜๋Š” ํ›„์„ฑ ์œ ์ „์ฒด ์ธก์ • ๊ฐ™์€ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ๋ฐ์ดํ„ฐ๊ฐ€ ์žˆ๋‹ค. ์„ธํฌ์˜ ์ƒํƒœ๋ฅผ ๋” ์ž์„ธํžˆ ์ดํ•ดํ•˜๊ธฐ ์œ„ํ•ด์„œ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ์กฐ์ ˆ์ž์™€ ์œ ์ „์ž ์‚ฌ์ด์˜ ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์•Œ์•„๋‚ด๋Š” ๊ฒƒ์ด ์ค‘์š”ํ•˜๋‹ค. ํ•˜์ง€๋งŒ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ์กฐ์ ˆ ๊ด€๊ณ„๋Š” ๋งค์šฐ ๋ณต์žกํ•˜๊ณ  ๋ชจ๋“  ์„ธํฌ ์ƒํƒœ ํŠน์ด์ ์ธ ๊ด€๊ณ„๋ฅผ ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆํ•˜๋Š” ๊ฒƒ์€ ๋ถˆ๊ฐ€๋Šฅํ•˜๋‹ค. ๋”ฐ๋ผ์„œ, ์„œ๋กœ ๋‹ค๋ฅธ ์œ ํ˜•์˜ ๊ณ ์ฐจ์› ์˜ค๋ฏน์Šค ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ํšจ์œจ์ ์ธ ์ปดํ“จํ„ฐ ๊ณตํ•™์  ์ ‘๊ทผ๋ฐฉ๋ฒ•์ด ์š”๊ตฌ๋œ๋‹ค. ์ด๋Ÿฌํ•œ ๊ณ ์ฐจ์› ๋ฐ์ดํ„ฐ๋ฅผ ์ฒ˜๋ฆฌํ•˜๋Š” ํ•œ ๊ฐ€์ง€ ๋ฐฉ๋ฒ•์€ ๋‹ค์–‘ํ•œ ๋ฐ์ดํ„ฐ๋ฒ ์ด์Šค์—์„œ ์„ ๋ณ„๋œ ์œ ์ „์ž์˜ ๊ธฐ๋Šฅ๊ณผ ์˜ค๋ฏน์Šค ๊ฐ„์˜ ๊ด€๊ณ„์™€ ๊ฐ™์€ ์™ธ๋ถ€ ์ƒ๋ฌผํ•™์  ์ง€์‹์„ ํ†ตํ•ฉํ•˜์—ฌ ํ™œ์šฉํ•˜๋Š” ๊ฒƒ์ด๋‹ค. ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์€ ์ƒ๋ฌผํ•™์  ์‚ฌ์ „ ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ๋ฐ์ดํ„ฐ๋กœ๋ถ€ํ„ฐ ์œ ์ „์ž์˜ ๋ฐœํ˜„์„ ์กฐ์ ˆํ•˜๋Š” ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ์ปดํ“จํ„ฐ ๊ณตํ•™์ ์ธ ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ๋Š” ๋งˆ์ดํฌ๋กœ ์•Œ์—”์—์ด์™€ ์œ ์ „์ž์˜ ์ผ๋Œ€๋‹ค ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฒ•์ด๋‹ค. ๋งˆ์ดํฌ๋กœ ์•Œ์—”์—์ด ํ‘œ์  ์˜ˆ์ธก ๋ฌธ์ œ๋Š” ๊ฐ€๋Šฅํ•œ ํ‘œ์  ์œ ์ „์ž์˜ ๊ฐœ์ˆ˜๊ฐ€ ๋„ˆ๋ฌด ๋งŽ์œผ๋ฉฐ ๊ฑฐ์ง“ ์–‘์„ฑ๊ณผ ๊ฑฐ์ง“์Œ์„ฑ์˜ ๋น„์œจ์„ ์กฐ์ ˆํ•ด์•ผ ํ•˜๋Š” ๋ฌธ์ œ๊ฐ€ ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ๋งˆ์ดํฌ๋กœ ์•Œ์—”์—์ด-์œ ์ „์ž์™€ ๋ฐ์ดํ„ฐ์˜ ๋งฅ๋ฝ ์‚ฌ์ด์˜ ์—ฐ๊ด€์„ฑ์„ ๋ฌธํ—Œ ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ๊ฒฐ์ •ํ•˜๊ณ  ๋งˆ์ดํฌ๋กœ ์•Œ์—”์—์ด-์œ ์ „์ž ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ContextMMIA๋ฅผ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ContextMMIA๋Š” ํ†ต๊ณ„์  ์œ ์˜์„ฑ๊ณผ ๋ฌธํ—Œ ๊ด€๋ จ์„ฑ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๋งˆ์ดํฌ๋กœ ์•Œ์—”์—์ด-์œ ์ „์ž ๊ด€๊ณ„์˜ ์ ์ˆ˜๋ฅผ ๊ณ„์‚ฐํ•˜์—ฌ ๊ด€๊ณ„์˜ ์šฐ์„ ์ˆœ์œ„๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ์˜ˆํ›„๊ฐ€ ๋‹ค๋ฅธ ์œ ๋ฐฉ์•” ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹คํ—˜์—์„œ ContextMMIA๋Š” ์˜ˆํ›„๊ฐ€ ๋‚˜์œ ์œ ๋ฐฉ์•”์—์„œ ํ™œ์„ฑํ™”๋œ ๋งˆ์ดํฌ๋กœ ์•Œ์—”์—์ด-์œ ์ „์ž ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜์˜€๊ณ  ๊ธฐ์กด ์‹คํ—˜์ ์œผ๋กœ ๊ฒ€์ฆ๋œ ๊ด€๊ณ„๊ฐ€ ๋†’์€ ์šฐ์„ ์ˆœ์œ„๋กœ ์˜ˆ์ธก๋˜์—ˆ์œผ๋ฉฐ ํ•ด๋‹น ์œ ์ „์ž๋“ค์ด ์œ ๋ฐฉ์•” ๊ด€๋ จ ๊ฒฝ๋กœ์— ๊ด€์—ฌํ•˜๋Š” ๊ฒƒ์œผ๋กœ ์•Œ๋ ค์กŒ๋‹ค. ๋‘ ๋ฒˆ์งธ๋Š” ์•ฝ๋ฌผ ๋ฐ˜์‘์„ ์ผ์œผํ‚ค๋Š” ์œ ์ „์ž์˜ ๋‹ค๋Œ€์ผ ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฒ•์ด๋‹ค. ์•ฝ๋ฌผ ๋ฐ˜์‘ ์˜ˆ์ธก์„ ์œ„ํ•ด์„œ ์•ฝ๋ฌผ ๋ฐ˜์‘ ๋งค๊ฐœ ์œ ์ „์ž๋ฅผ ๊ฒฐ์ •ํ•ด์•ผ ํ•˜๋ฉฐ ์ด๋ฅผ ์œ„ํ•ด 20,000๊ฐœ ์œ ์ „์ž์˜ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ๋ฐ์ดํ„ฐ๋ฅผ ํ†ตํ•ฉ ๋ถ„์„ํ•˜๋Š” ๋ฐฉ๋ฒ•์ด ํ•„์š”ํ•˜๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ €์ฐจ์› ์ž„๋ฒ ๋”ฉ ๋ฐฉ๋ฒ•, ์•ฝ๋ฌผ-์œ ์ „์ž ์—ฐ๊ด€์„ฑ์— ๋Œ€ํ•œ ๋ฌธํ—Œ ์ง€์‹ ๋ฐ ์œ ์ „์ž-์œ ์ „์ž ์ƒํ˜ธ ์ž‘์šฉ ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ์•ฝ๋ฌผ ๋ฐ˜์‘์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ DRIM์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. DRIM์€ ์˜คํ† ์ธ์ฝ”๋”, ํ…์„œ ๋ถ„ํ•ด, ์•ฝ๋ฌผ-์œ ์ „์ž ์—ฐ๊ด€์„ฑ์„ ์ด์šฉํ•˜์—ฌ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ๋ฐ์ดํ„ฐ์—์„œ ๋‹ค๋Œ€์ผ ๊ด€๊ณ„๋ฅผ ๊ฒฐ์ •ํ•œ๋‹ค. ๊ฒฐ์ •๋œ ๋งค๊ฐœ ์œ ์ „์ž์˜ ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์œ ์ „์ž-์œ ์ „์ž ์ƒํ˜ธ ์ž‘์šฉ ์ง€์‹๊ณผ ์•ฝ๋ฌผ ๋ฐ˜์‘ ์‹œ๊ณ„์—ด ์œ ์ „์ž ๋ฐœํ˜„ ๋ฐ์ดํ„ฐ์˜ ์ƒํ˜ธ ์ƒ๊ด€๊ด€๊ณ„๋ฅผ ์ด์šฉํ•˜์—ฌ ๊ฒฐ์ •ํ•œ๋‹ค. ์œ ๋ฐฉ์•” ์„ธํฌ์ฃผ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹คํ—˜์—์„œ DRIM์€ ๋ผํŒŒํ‹ฐ๋‹™์ด ํ‘œ์ ์œผ๋กœ ํ•˜๋Š” PI3K-Akt ํŒจ์Šค์›จ์ด์— ๊ด€์—ฌํ•˜๋Š” ์œ ์ „์ž๋“ค์˜ ์•ฝ๋ฌผ ๋ฐ˜์‘ ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜์˜€๊ณ  ๋ผํŒŒํ‹ฐ๋‹™ ๋ฐ˜์‘์„ฑ๊ณผ ๊ด€๋ จ๋œ ๋งค๊ฐœ ์œ ์ „์ž๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ๊ทธ๋ฆฌ๊ณ  ์˜ˆ์ธก๋œ ์กฐ์ ˆ ๊ด€๊ณ„๊ฐ€ ์„ธํฌ์ฃผ ํŠน์ด์ ์ธ ํŒจํ„ด์„ ๋ณด์ด๋Š” ๊ฒƒ์„ ํ™•์ธํ•˜์˜€๋‹ค. ์„ธ ๋ฒˆ์งธ๋Š” ์„ธํฌ์˜ ์ƒํƒœ๋ฅผ ์„ค๋ช…ํ•˜๋Š” ์กฐ์ ˆ์ž์™€ ์œ ์ „์ž์˜ ๋‹ค๋Œ€๋‹ค ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•œ ๊ธฐ๋ฒ•์ด๋‹ค. ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„ ์˜ˆ์ธก์„ ์œ„ํ•ด ๊ด€์ฐฐ๋œ ์œ ์ „์ž ๋ฐœํ˜„ ๊ฐ’๊ณผ ์œ ์ „์ž ์กฐ์ ˆ ๋„คํŠธ์›Œํฌ๋กœ๋ถ€ํ„ฐ ์ถ”์ •๋œ ์œ ์ „์ž ๋ฐœํ˜„ ๊ฐ’ ์‚ฌ์ด์˜ ์ฐจ์ด๋ฅผ ์ธก์ •ํ•˜๋Š” ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ๋งŒ๋“ค์—ˆ๋‹ค. ๋ชฉ์  ํ•จ์ˆ˜๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์กฐ์ ˆ์ธ์ž์™€ ์œ ์ „์ž์˜ ์ˆ˜์— ๋”ฐ๋ผ ๊ธฐํ•˜๊ธ‰์ˆ˜์ ์œผ๋กœ ์ฆ๊ฐ€ํ•˜๋Š” ๊ฒ€์ƒ‰ ๊ณต๊ฐ„์„ ํƒ์ƒ‰ํ•ด์•ผ ํ•œ๋‹ค. ์ด ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์กฐ์ ˆ์ž-์œ ์ „์ž ์ƒํ˜ธ ์ž‘์šฉ ์ง€์‹์„ ํ™œ์šฉํ•˜์—ฌ ๋‘ ๊ฐ€์ง€ ์—ฐ์‚ฐ์„ ๋ฐ˜๋ณตํ•˜์—ฌ ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์ฐพ๋Š” ์ตœ์ ํ™” ๊ธฐ๋ฒ•์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ์ฒซ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋„คํŠธ์›Œํฌ์— ๊ฐ„์„ ์„ ์ถ”๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ๊ฐ•ํ™” ํ•™์Šต ๊ธฐ๋ฐ˜ ํœด๋ฆฌ์Šคํ‹ฑ์„ ํ†ตํ•ด ์กฐ์ ˆ์ž๋ฅผ ์„ ํƒํ•˜๋Š” ๋‹ค๋Œ€์ผ ์œ ์ „์ž ์ค‘์‹ฌ ๊ด€๊ณ„๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ๋‘ ๋ฒˆ์งธ ๋‹จ๊ณ„๋Š” ๋„คํŠธ์›Œํฌ์—์„œ ๊ฐ„์„ ์„ ์ œ๊ฑฐํ•˜๊ธฐ ์œ„ํ•ด ์œ ์ „์ž๋ฅผ ํ™•๋ฅ ์ ์œผ๋กœ ์„ ํƒํ•˜๋Š” ์ผ๋Œ€๋‹ค ์กฐ์ ˆ์ž ์ค‘์‹ฌ ๊ด€๊ณ„๋ฅผ ํƒ์ƒ‰ํ•˜๋Š” ๋‹จ๊ณ„์ด๋‹ค. ์œ ๋ฐฉ์•” ์„ธํฌ์ฃผ ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•œ ์‹คํ—˜์—์„œ ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์ด์ „์˜ ์ตœ์ ํ™” ๋ฐฉ๋ฒ•๋ณด๋‹ค ๋” ์ •ํ™•ํ•œ ์œ ์ „์ž ๋ฐœํ˜„๋Ÿ‰ ์ถ”์ •์„ ํ•˜์˜€๊ณ  ์กฐ์ ˆ์ž ๋ฐ ์œ ์ „์ž ๋ฐœํ˜„ ๋ฐ์ดํ„ฐ๋กœ ์œ ๋ฐฉ์•” ์•„ํ˜• ํŠน์ด์  ๋„คํŠธ์›Œํฌ๋ฅผ ๊ตฌ์„ฑํ•˜์˜€๋‹ค. ๋˜ํ•œ, ์œ ๋ฐฉ์•” ์•„ํ˜• ๊ด€๋ จ ์‹คํ—˜ ๊ฒ€์ฆ๋œ ์กฐ์ ˆ ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜์˜€๋‹ค. ์š”์•ฝํ•˜๋ฉด, ๋ณธ ๋ฐ•์‚ฌํ•™์œ„ ๋…ผ๋ฌธ์€ ๋‹ค์ค‘ ์˜ค๋ฏน์Šค ์กฐ์ ˆ์ž์™€ ์œ ์ „์ž์˜ ์‚ฌ์ด์˜ ์ผ๋Œ€๋‹ค, ๋‹ค๋Œ€์ผ, ๋‹ค๋Œ€๋‹ค ๊ด€๊ณ„๋ฅผ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์ƒ๋ฌผํ•™์  ์ง€์‹์„ ํ™œ์šฉํ•œ ์ปดํ“จํ„ฐ ๊ณตํ•™์  ์ ‘๊ทผ๋ฒ•์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ๋ฐฉ๋ฒ•์€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋Š” ๋ถ„์ž ์ƒ๋ฌผํ•™ ๋ฐ์ดํ„ฐ๋ฅผ ๋ถ„์„ํ•˜์—ฌ ์œ ์ „์ž ์กฐ์ ˆ ์ƒํ˜ธ ์ž‘์šฉ์„ ์ดํ•ดํ•จ์œผ๋กœ์จ ์„ธํฌ ๊ธฐ๋Šฅ์— ๋Œ€ํ•œ ์‹ฌ์ธต์ ์ธ ์ดํ•ด๋ฅผ ๋„์™€์ค„ ์ˆ˜ ์žˆ์„ ๊ฒƒ์œผ๋กœ ๊ธฐ๋Œ€๋œ๋‹ค.Understanding how cells function or respond to external stimuli is one of the most important questions in biology and medicine. Thanks to the advances in instrumental technologies, scientists can routinely measure events within cells in single biological experiments. Notable examples are multi-omics data: sequencing of genomes, quantifications of gene expression, and identification of epigenetic events that regulate expression of genes. In order to better understand cellular mechanisms, it is essential to identify regulatory relationships between multi-omics regulators and genes. However, regulatory relationships are very complex and it is infeasible to validate all condition-specific relationships experimentally. Thus, there is an urgent need for an efficient computational method to extract relationships from different types of high-dimensional omics data. One way to address these high-dimensional data is to incorporate external biological knowledge such as relationships between omics and functions of genes curated in various databases. In my doctoral study, I developed three computational approaches to identify the regulatory relationships from multi-omics data utilizing biological prior knowledge. The first study proposes a method to predict one-to-m relationships between miRNA and genes. The computational challenge of miRNA target prediction is that there are many miRNA target candidates, and the ratio of false positives to false negatives needs to be adjusted. This challenge is addressed by utilizing literature knowledge for determining the association between miRNA-gene and a given context. In this study, I developed ContextMMIA to predict miRNA-gene relationships from miRNA and gene expression data. ContextMMIA computes scores of miRNA-gene relationships based on statistical significance and literature relevance and prioritizes the relationships based on the scores. In experiments on breast cancer data with different prognosis, ContextMMIA predicted differentially activated miRNA-gene relationships in invasive breast cancer. The experimentally verified miRNA-gene relationships were predicted with high priority and those genes are known to be involved in breast cancer-related pathways. The second study proposes a method to predict n-to-one relationships between regulators and gene on drug response. The computational challenge of drug response prediction is how to integrate multi-omics data of 20,000 genes for determining drug response mediator genes. This challenge is addressed by utilizing low-dimensional embedding methods, literature knowledge of drug-gene associations, and gene-gene interaction knowledge. For this problem, I developed DRIM to predict drug response relationships from the multi-omics data and drug-induced time-series gene expression data. DRIM uses autoencoder, tensor decomposition, and drug-gene association to determine n-to-one relationships from multi-omics data. Then, regulatory relationships of mediator genes are determined by gene-gene interaction knowledge and cross-correlation of drug-induced time-series gene expression data. In experiments on breast cancer cell line data, DRIM extracted mediator genes relevant to drug response and regulatory relationships of genes involved in the PI3K-Akt pathway targeted by lapatinib. In addition, DRIM revealed distinguished patterns of relationships in breast cancer cell lines with different lapatinib resistance. The third study proposes a method to predict n-to-m relationships between regulators and genes. In order to predict n-to-m relationships, this study formulated an objective function that measures the deviation between observed gene expression values and estimated gene expression values derived from gene regulatory networks. The computational challenge of minimizing the objective function is to navigate the search space of relationships exponentially increasing according to the number of regulators and genes. This challenge is addressed by the iterative local optimization with regulator-gene interaction knowledge. In this study, I developed a two-step iterative RL-based method to predict n-to-m relationships from regulator and gene expression data. The first step is to explore the n-to-one gene-oriented step that selects regulators by reinforcement learning based heuristic to add edges to the network. The second step is to explore the one-to-m regulator-oriented step that stochastically selects genes to remove edges from the network. In experiments on breast cancer cell line data, the proposed method constructed breast cancer subtype-specific networks from the regulator and gene expression profiles with a more accurate gene expression estimation than previous combinatorial optimization methods. Moreover, regulatory relationships involved in the networks were associated with breast cancer subtypes. In summary, in this thesis, I proposed computational methods for predicting one-to-m, n-to-one, and n-to-m relationships between multi-omics regulators and genes utilizing external domain knowledge. The proposed methods are expected to deepen our knowledge of cellular mechanisms by understanding gene regulatory interactions by analyzing the ever-increasing molecular biology data such as The Cancer Genome Atlas, Cancer Cell Line Encyclopedia.Chapter 1 Introduction 1 1.1 Biological background 1 1.1.1 Multi-omics analysis 1 1.1.2 Multi-omics relationships indicating cell state 2 1.1.3 Biological prior knowledge 4 1.2 Research problems for the multi-omics relationship 6 1.3 Computational challenges and approaches in the exploring multiomics relationship 6 1.4 Outline of the thesis 12 Chapter 2 Literature-based condition-specific miRNA-mRNA target prediction 13 2.1 Computational Problem & Evaluation criterion 14 2.2 Related works 15 2.3 Motivation 17 2.4 Methods 20 2.4.1 Identifying genes and miRNAs based on the user-provided context 22 2.4.2 Omics Score 23 2.4.3 Context Score 24 2.4.4 Confidence Score 26 2.5 Results 26 2.5.1 Pathway analysis 27 2.5.2 Reproducibility of validated targets in humans 31 2.5.3 Sensitivity tests when different keywords are used 33 2.6 Summary 34 Chapter 3 DRIM: A web-based system for investigating drug response at the molecular level by condition-specific multi-omics data integration 36 3.1 Computational Problem & Evaluation criterion 37 3.2 Related works 38 3.3 Motivation 42 3.4 Methods 44 3.4.1 Step 1: Input 45 3.4.2 Step 2: Identifying perturbed sub-pathway with time-series 45 3.4.3 Step 3: Embedding multi-omics for selecting potential mediator genes 47 3.4.4 Step 4: Construct TF-regulatory time-bounded network and identify regulatory path 52 3.4.5 Step 5: Analysis result on the web 52 3.5 Case study: Comparative analysis of breast cancer cell lines that have different sensitivity with lapatinib 54 3.5.1 Multi-omics analysis result before drug treatment 56 3.5.2 Time-series gene expression analysis after drug treatment 57 3.6 Summary 61 Chapter 4 Combinatorial modeling and optimization using iterative RL search for inferring sample-specific regulatory network 63 4.1 Computational Problem & Evaluation criterion 64 4.2 Related works 64 4.3 Motivation 66 4.4 Methods 68 4.4.1 Formulating an objective function 68 4.4.2 Overview of an iterative search method 70 4.4.3 G-step for exploring n-to-one gene-oriented relationship 73 4.4.4 R-step for exploring one-to-m regulator-oriented relationship 79 4.5 Results 80 4.5.1 Cancer cell line data 80 4.5.2 Hyperparameters 81 4.5.3 Quantitative evaluation 82 4.5.4 Qualitative evaluation 83 4.6 Summary 86 Chapter 5 Conclusions 88 ๊ตญ๋ฌธ์ดˆ๋ก 111๋ฐ•

    Network-driven strategies to integrate and exploit biomedical data

    Get PDF
    [eng] In the quest for understanding complex biological systems, the scientific community has been delving into protein, chemical and disease biology, populating biomedical databases with a wealth of data and knowledge. Currently, the field of biomedicine has entered a Big Data era, in which computational-driven research can largely benefit from existing knowledge to better understand and characterize biological and chemical entities. And yet, the heterogeneity and complexity of biomedical data trigger the need for a proper integration and representation of this knowledge, so that it can be effectively and efficiently exploited. In this thesis, we aim at developing new strategies to leverage the current biomedical knowledge, so that meaningful information can be extracted and fused into downstream applications. To this goal, we have capitalized on network analysis algorithms to integrate and exploit biomedical data in a wide variety of scenarios, providing a better understanding of pharmacoomics experiments while helping accelerate the drug discovery process. More specifically, we have (i) devised an approach to identify functional gene sets associated with drug response mechanisms of action, (ii) created a resource of biomedical descriptors able to anticipate cellular drug response and identify new drug repurposing opportunities, (iii) designed a tool to annotate biomedical support for a given set of experimental observations, and (iv) reviewed different chemical and biological descriptors relevant for drug discovery, illustrating how they can be used to provide solutions to current challenges in biomedicine.[cat] En la cerca dโ€™una millor comprensiรณ dels sistemes biolรฒgics complexos, la comunitat cientรญfica ha estat aprofundint en la biologia de les proteรฏnes, fร rmacs i malalties, poblant les bases de dades biomรจdiques amb un gran volum de dades i coneixement. En lโ€™actualitat, el camp de la biomedicina es troba en una era de โ€œdades massivesโ€ (Big Data), on la investigaciรณ duta a terme per ordinadors seโ€™n pot beneficiar per entendre i caracteritzar millor les entitats quรญmiques i biolรฒgiques. No obstant, la heterogeneรฏtat i complexitat de les dades biomรจdiques requereix que aquestes sโ€™integrin i es representin dโ€™una manera idรฒnia, permetent aixรญ explotar aquesta informaciรณ dโ€™una manera efectiva i eficient. Lโ€™objectiu dโ€™aquesta tesis doctoral รฉs desenvolupar noves estratรจgies que permetin explotar el coneixement biomรจdic actual i aixรญ extreure informaciรณ rellevant per aplicacions biomรจdiques futures. Per aquesta finalitat, em fet servir algoritmes de xarxes per tal dโ€™integrar i explotar el coneixement biomรจdic en diferents tasques, proporcionant un millor enteniment dels experiments farmacoรฒmics per tal dโ€™ajudar accelerar el procรฉs de descobriment de nous fร rmacs. Com a resultat, en aquesta tesi hem (i) dissenyat una estratรจgia per identificar grups funcionals de gens associats a la resposta de lรญnies celยทlulars als fร rmacs, (ii) creat una colยทlecciรณ de descriptors biomรจdics capaรงos, entre altres coses, dโ€™anticipar com les cรจlยทlules responen als fร rmacs o trobar nous usos per fร rmacs existents, (iii) desenvolupat una eina per descobrir quins contextos biolรฒgics corresponen a una associaciรณ biolรฒgica observada experimentalment i, finalment, (iv) hem explorat diferents descriptors quรญmics i biolรฒgics rellevants pel procรฉs de descobriment de nous fร rmacs, mostrant com aquests poden ser utilitzats per trobar solucions a reptes actuals dins el camp de la biomedicina

    Gene Expression Analysis Methods on Microarray Data a A Review

    Get PDF
    In recent years a new type of experiments are changing the way that biologists and other specialists analyze many problems. These are called high throughput experiments and the main difference with those that were performed some years ago is mainly in the quantity of the data obtained from them. Thanks to the technology known generically as microarrays, it is possible to study nowadays in a single experiment the behavior of all the genes of an organism under different conditions. The data generated by these experiments may consist from thousands to millions of variables and they pose many challenges to the scientists who have to analyze them. Many of these are of statistical nature and will be the center of this review. There are many types of microarrays which have been developed to answer different biological questions and some of them will be explained later. For the sake of simplicity we start with the most well known ones: expression microarrays

    Systems Analytics and Integration of Big Omics Data

    Get PDF
    A โ€œgenotype"" is essentially an organism's full hereditary information which is obtained from its parents. A ""phenotype"" is an organism's actual observed physical and behavioral properties. These may include traits such as morphology, size, height, eye color, metabolism, etc. One of the pressing challenges in computational and systems biology is genotype-to-phenotype prediction. This is challenging given the amount of data generated by modern Omics technologies. This โ€œBig Dataโ€ is so large and complex that traditional data processing applications are not up to the task. Challenges arise in collection, analysis, mining, sharing, transfer, visualization, archiving, and integration of these data. In this Special Issue, there is a focus on the systems-level analysis of Omics data, recent developments in gene ontology annotation, and advances in biological pathways and network biology. The integration of Omics data with clinical and biomedical data using machine learning is explored. This Special Issue covers new methodologies in the context of geneโ€“environment interactions, tissue-specific gene expression, and how external factors or host genetics impact the microbiome

    Explainable artificial intelligence for patient stratification and drug repositioning

    Get PDF
    Enabling precision medicine requires developing robust patient stratification methods as well as drugs tailored to homogeneous subgroups of patients from a heterogeneous population. Developing de novo drugs is expensive and time consuming with an ultimately low FDA approval rate. These limitations make developing new drugs for a small portion of a disease population unfeasible. Therefore, drug repositioning is an essential alternative for developing new drugs for a disease subpopulation. There is a crucial need to develop data-driven approaches that find druggable homogeneous subgroups within the disease population and reposition the drugs for these subgroups. In this study, we developed an explainable AI approach for patient stratification and drug repositioning. Exploratory mining mimicking the trial recruitment process as well as network analysis were used to discover homogeneous subgroups within a disease population. For each subgroup, a biomedical network analysis was done to find the drugs that are most relevant to a given subgroup of patients. The set of candidate drugs for each subgroup was ranked using an aggregated drug score assigned to each drug. The method represents a human-in-the-loop framework, where medical experts use data-driven results to generate hypotheses and obtain insights into potential therapeutic candidates for patients who belong to a subgroup. To examine the validity of our method, we implemented our method on individual cancer types and on pan-cancer data to consider the inter- and intra-heterogeneity within a cancer type and among cancer types. Patients' phenotypic and genotypic data was utilized with a heterogeneous knowledge base because it gives a multi-view perspective for finding new indications for drugs outside of their original use. Our analysis of the top candidate drugs for the subgroups showed that most of these drugs are FDA-approved drugs for cancer, and others are non-cancer related, but have the potential to be repurposed for cancer. We have discovered novel cancer-related mechanisms that these drugs can target in different cancer types to reduce cancer treatment costs and improve patient survival. Further wet lab experiments to validate these findings are required prior to initiating clinical trials using these repurposed therapies.Includes bibliographical references

    Opportunities and obstacles for deep learning in biology and medicine

    Get PDF
    Deep learning describes a class of machine learning algorithms that are capable of combining raw inputs into layers of intermediate features. These algorithms have recently shown impressive results across a variety of domains. Biology and medicine are data-rich disciplines, but the data are complex and often ill-understood. Hence, deep learning techniques may be particularly well suited to solve problems of these fields. We examine applications of deep learning to a variety of biomedical problems-patient classification, fundamental biological processes and treatment of patients-and discuss whether deep learning will be able to transform these tasks or if the biomedical sphere poses unique challenges. Following from an extensive literature review, we find that deep learning has yet to revolutionize biomedicine or definitively resolve any of the most pressing challenges in the field, but promising advances have been made on the prior state of the art. Even though improvements over previous baselines have been modest in general, the recent progress indicates that deep learning methods will provide valuable means for speeding up or aiding human investigation. Though progress has been made linking a specific neural network\u27s prediction to input features, understanding how users should interpret these models to make testable hypotheses about the system under study remains an open challenge. Furthermore, the limited amount of labelled data for training presents problems in some domains, as do legal and privacy constraints on work with sensitive health records. Nonetheless, we foresee deep learning enabling changes at both bench and bedside with the potential to transform several areas of biology and medicine

    Applying machine learning to derive actionable insights in precision oncology

    Get PDF
    Cancer drugs have among the lowest response rates across all diseases. Combining the wealth of omics data and machine learning is a promising way to reach this goal. In this thesis, we addressed the following aspects of precision oncology: (i) We used Macau, a bayesian multitask multi-relational algorithm to explore the associations between the drugsโ€™ targets and signaling pathwaysโ€™ activation. We applied this methodology to drug synergy prediction and stratification. (ii) We leveraged through a collaborative machine learning competition to understand the association between genome, transcriptome and proteome in tumors. The main focus of this thesis is to use machine learning to generate actionable insights, for more personalized therapies

    Deep transfer learning for drug response prediction

    Get PDF
    The goal of precision oncology is to make accurate predictions for cancer patients via some omics data types of individual patients. Major challenges of computational methods for drug response prediction are that labeled clinical data is very limited, not publicly available, or has drug response for one or two drugs. These challenges have been addressed by generating large-scale pre-clinical datasets such as cancer cell lines or patient-derived xenografts (PDX). These pre-clinical datasets have multi-omics characterization of samples and are often screened with hundreds of drugs which makes them viable resources for precision oncology. However, they raise new questions: how can we integrate different data types? how can we handle data discrepancy between pre-clinical and clinical datasets that exist due to basic biological differences? and how can we make the best use of unlabeled samples in drug response prediction where labeling is extra challenging? In this thesis, we propose methods based on deep neural networks to answer these questions. First, we propose a method of multi-omics integration. Second, we propose a transfer learning method to address data discrepancy between cell lines, patients, and PDX models in the input and output space. Finally, we proposed a semi-supervised method of out-of-distribution generalization to predict drug response using labeled and unlabeled samples. The proposed methods have promising performance when compared to the state-of-the-art and may guide precision oncology more accurately
    • โ€ฆ
    corecore