81 research outputs found

    Combining Prior Knowledge and Data: Beyond the Bayesian Framework

    Get PDF
    For many tasks such as text categorization and control of robotic systems, state-of-the art learning systems can produce results comparable in accuracy to those of human subjects. However, the amount of training data needed for such systems can be prohibitively large for many practical problems. A text categorization system, for example, may need to see many text postings manually tagged with their subjects before it learns to predict the subject of the next posting with high accuracy. A reinforcement learning (RL) system learning how to drive a car needs a lot of experimentation with the actual car before acquiring the optimal policy. An optimizing compiler targeting a certain platform has to construct, compile, and execute many versions of the same code with different optimization parameters to determine which optimizations work best. Such extensive sampling can be time-consuming, expensive (in terms of both expense of the human expertise needed to label data and wear and tear on the robotic equipment used for exploration in case of RL), and sometimes dangerous (e.g., an RL agent driving the car off the cliff to see if it survives the crash). The goal of this work is to reduce the amount of training data an agent needs in order to learn how to perform a task successfully. This is done by providing the system with prior knowledge about its domain. The knowledge is used to bias the agent towards useful solutions and limit the amount of training needed. We explore this task in three contexts: classification (determining the subject of a newsgroup posting), control (learning to perform tasks such as driving a car up the mountain in simulation), and optimization (optimizing performance of linear algebra operations on different hardware platforms). For the text categorization problem, we introduce a novel algorithm which efficiently integrates prior knowledge into large margin classification. We show that prior knowledge simplifies the problem by reducing the size of the hypothesis space. We also provide formal convergence guarantees for our algorithm. For reinforcement learning, we introduce a novel framework for defining planning problems in terms of qualitative statements about the world (e.g., ``the faster the car is going, the more likely it is to reach the top of the mountain''). We present an algorithm based on policy iteration for solving such qualitative problems and prove its convergence. We also present an alternative framework which allows the user to specify prior knowledge quantitatively in form of a Markov Decision Process (MDP). This prior is used to focus exploration on those regions of the world in which the optimal policy is most sensitive to perturbations in transition probabilities and rewards. Finally, in the compiler optimization problem, the prior is based on an analytic model which determines good optimization parameters for a given platform. This model defines a Bayesian prior which, combined with empirical samples (obtained by measuring the performance of optimized code segments), determines the maximum-a-posteriori estimate of the optimization parameters

    Aspects of kernel based learning algorithms

    Get PDF

    Image segmentation and pattern classification using support vector machines

    Get PDF
    Image segmentation and pattern classification have long been important topics in computer science research. Image segmentation is one of the basic and challenging lower-level image processing tasks. Feature extraction, feature reduction, and classifier design based on selected features are the three essential issues for the pattern classification problem. In this dissertation, an automatic Seeded Region Growing (SRG) algorithm for color image segmentation is developed. In the SRG algorithm, the initial seeds are automatically determined. An adaptive morphological edge-linking algorithm to fill in the gaps between edge segments is designed. Broken edges are extended along their slope directions by using the adaptive dilation operation with suitably sized elliptical structuring elements. The size and orientation of the structuring element are adjusted according to local properties. For feature reduction, an improved feature reduction method in input and feature spaces using Support Vector Machines (SVMs) is developed. In the input space, a subset of input features is selected by the ranking of their contributions to the decision function. In the feature space, features are ranked according to the weighted support vectors in each dimension. For object detection, a fast face detection system using SVMs is designed. Twoeye patterns are first detected using a linear SVM, so that most of the background can be eliminated quickly. Two-layer 2nd-degree polynomial SVMs are trained for further face verification. The detection process is implemented directly in feature space, which leads to a faster SVM. By training a two-layer SVM, higher classification rates can be achieved. For active learning, an improved incremental training algorithm for SVMs is developed. Instead of selecting training samples randomly, the k-mean clustering algorithm is applied to collect the initial set of training samples. In active query, a weight is assigned to each sample according to its distance to the current separating hyperplane and the confidence factor. The confidence factor, calculated from the upper bounds of SVM errors, is used to indicate the degree of closeness of the current separating hyperplane to the optimal solution

    Inter-query Learning in Content-based Image Retrieval

    Get PDF
    Computer Scienc

    Intelligent Data Mining using Kernel Functions and Information Criteria

    Get PDF
    Radial Basis Function (RBF) Neural Networks and Support Vector Machines (SVM) are two powerful kernel related intelligent data mining techniques. The current major problems with these methods are over-fitting and the existence of too many free parameters. The way to select the parameters can directly affect the generalization performance(test error) of theses models. Current practice in how to choose the model parameters is an art, rather than a science in this research area. Often, some parameters are predetermined, or randomly chosen. Other parameters are selected through repeated experiments that are time consuming, costly, and computationally very intensive. In this dissertation, we provide a two-stage analytical hybrid-training algorithm by building a bridge among regression tree, EM algorithm, and Radial Basis Function Neural Networks together. Information Complexity (ICOMP) criterion of Bozdogan along with other information based criteria are introduced and applied to control the model complexity, and to decide the optimal number of kernel functions. In the first stage of the hybrid, regression tree and EM algorithm are used to determine the kernel function parameters. In the second stage of the hybrid, the weights (coefficients) are calculated and information criteria are scored. Kernel Principal Component Analysis (KPCA) using EM algorithm for feature selection and data preprocessing is also introduced and studied. Adaptive Support Vector Machines (ASVM) and some efficient algorithms are given to deal with massive data sets in support vector classifications. Versatility and efficiency of the new proposed approaches are studied on real data sets and via Monte Carlo sim- ulation experiments

    Integration of Auxiliary Data Knowledge in Prototype Based Vector Quantization and Classification Models

    Get PDF
    This thesis deals with the integration of auxiliary data knowledge into machine learning methods especially prototype based classification models. The problem of classification is diverse and evaluation of the result by using only the accuracy is not adequate in many applications. Therefore, the classification tasks are analyzed more deeply. Possibilities to extend prototype based methods to integrate extra knowledge about the data or the classification goal is presented to obtain problem adequate models. One of the proposed extensions is Generalized Learning Vector Quantization for direct optimization of statistical measurements besides the classification accuracy. But also modifying the metric adaptation of the Generalized Learning Vector Quantization for functional data, i. e. data with lateral dependencies in the features, is considered.:Symbols and Abbreviations 1 Introduction 1.1 Motivation and Problem Description . . . . . . . . . . . . . . . . . 1 1.2 Utilized Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Prototype Based Methods 19 2.1 Unsupervised Vector Quantization . . . . . . . . . . . . . . . . . . 22 2.1.1 C-means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.1.2 Self-Organizing Map . . . . . . . . . . . . . . . . . . . . . . 25 2.1.3 Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.1.4 Common Generalizations . . . . . . . . . . . . . . . . . . . 30 2.2 Supervised Vector Quantization . . . . . . . . . . . . . . . . . . . . 35 2.2.1 The Family of Learning Vector Quantizers - LVQ . . . . . . 36 2.2.2 Generalized Learning Vector Quantization . . . . . . . . . 38 2.3 Semi-Supervised Vector Quantization . . . . . . . . . . . . . . . . 42 2.3.1 Learning Associations by Self-Organization . . . . . . . . . 42 2.3.2 Fuzzy Labeled Self-Organizing Map . . . . . . . . . . . . . 43 2.3.3 Fuzzy Labeled Neural Gas . . . . . . . . . . . . . . . . . . 45 2.4 Dissimilarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . 47 2.4.1 Differentiable Kernels in Generalized LVQ . . . . . . . . . 52 2.4.2 Dissimilarity Adaptation for Performance Improvement . 56 3 Deeper Insights into Classification Problems - From the Perspective of Generalized LVQ- 81 3.1 Classification Models . . . . . . . . . . . . . . . . . . . . . . . . . . 81 3.2 The Classification Task . . . . . . . . . . . . . . . . . . . . . . . . . 84 3.3 Evaluation of Classification Results . . . . . . . . . . . . . . . . . . 88 3.4 The Classification Task as an Ill-Posed Problem . . . . . . . . . . . 92 4 Auxiliary Structure Information and Appropriate Dissimilarity Adaptation in Prototype Based Methods 93 4.1 Supervised Vector Quantization for Functional Data . . . . . . . . 93 4.1.1 Functional Relevance/Matrix LVQ . . . . . . . . . . . . . . 95 4.1.2 Enhancement Generalized Relevance/Matrix LVQ . . . . 109 4.2 Fuzzy Information About the Labels . . . . . . . . . . . . . . . . . 121 4.2.1 Fuzzy Semi-Supervised Self-Organizing Maps . . . . . . . 122 4.2.2 Fuzzy Semi-Supervised Neural Gas . . . . . . . . . . . . . 123 5 Variants of Classification Costs and Class Sensitive Learning 137 5.1 Border Sensitive Learning in Generalized LVQ . . . . . . . . . . . 137 5.1.1 Border Sensitivity by Additive Penalty Function . . . . . . 138 5.1.2 Border Sensitivity by Parameterized Transfer Function . . 139 5.2 Optimizing Different Validation Measures by the Generalized LVQ 147 5.2.1 Attention Based Learning Strategy . . . . . . . . . . . . . . 148 5.2.2 Optimizing Statistical Validation Measurements for Binary Class Problems in the GLVQ . . . . . . . . . . . . . 155 5.3 Integration of Structural Knowledge about the Labeling in Fuzzy Supervised Neural Gas . . . . . . . . . . . . . . . . . . . . . . . . . 160 6 Conclusion and Future Work 165 My Publications 168 A Appendix 173 A.1 Stochastic Gradient Descent (SGD) . . . . . . . . . . . . . . . . . . 173 A.2 Support Vector Machine . . . . . . . . . . . . . . . . . . . . . . . . 175 A.3 Fuzzy Supervised Neural Gas Algorithm Solved by SGD . . . . . 179 Bibliography 182 Acknowledgements 20

    Methods for Analysing Endothelial Cell Shape and Behaviour in Relation to the Focal Nature of Atherosclerosis

    Get PDF
    The aim of this thesis is to develop automated methods for the analysis of the spatial patterns, and the functional behaviour of endothelial cells, viewed under microscopy, with applications to the understanding of atherosclerosis. Initially, a radial search approach to segmentation was attempted in order to trace the cell and nuclei boundaries using a maximum likelihood algorithm; it was found inadequate to detect the weak cell boundaries present in the available data. A parametric cell shape model was then introduced to fit an equivalent ellipse to the cell boundary by matching phase-invariant orientation fields of the image and a candidate cell shape. This approach succeeded on good quality images, but failed on images with weak cell boundaries. Finally, a support vector machines based method, relying on a rich set of visual features, and a small but high quality training dataset, was found to work well on large numbers of cells even in the presence of strong intensity variations and imaging noise. Using the segmentation results, several standard shear-stress dependent parameters of cell morphology were studied, and evidence for similar behaviour in some cell shape parameters was obtained in in-vivo cells and their nuclei. Nuclear and cell orientations around immature and mature aortas were broadly similar, suggesting that the pattern of flow direction near the wall stayed approximately constant with age. The relation was less strong for the cell and nuclear length-to-width ratios. Two novel shape analysis approaches were attempted to find other properties of cell shape which could be used to annotate or characterise patterns, since a wide variability in cell and nuclear shapes was observed which did not appear to fit the standard parameterisations. Although no firm conclusions can yet be drawn, the work lays the foundation for future studies of cell morphology. To draw inferences about patterns in the functional response of cells to flow, which may play a role in the progression of disease, single-cell analysis was performed using calcium sensitive florescence probes. Calcium transient rates were found to change with flow, but more importantly, local patterns of synchronisation in multi-cellular groups were discernable and appear to change with flow. The patterns suggest a new functional mechanism in flow-mediation of cell-cell calcium signalling

    Longitudinal tracking of physiological state with electromyographic signals.

    Get PDF
    Electrophysiological measurements have been used in recent history to classify instantaneous physiological configurations, e.g., hand gestures. This work investigates the feasibility of working with changes in physiological configurations over time (i.e., longitudinally) using a variety of algorithms from the machine learning domain. We demonstrate a high degree of classification accuracy for a binary classification problem derived from electromyography measurements before and after a 35-day bedrest. The problem difficulty is increased with a more dynamic experiment testing for changes in astronaut sensorimotor performance by taking electromyography and force plate measurements before, during, and after a jump from a small platform. A LASSO regularization is performed to observe changes in relationship between electromyography features and force plate outcomes. SVM classifiers are employed to correctly identify the times at which these experiments are performed, which is important as these indicate a trajectory of adaptation
    • …
    corecore