5,083 research outputs found

    Visualization and Correction of Automated Segmentation, Tracking and Lineaging from 5-D Stem Cell Image Sequences

    Get PDF
    Results: We present an application that enables the quantitative analysis of multichannel 5-D (x, y, z, t, channel) and large montage confocal fluorescence microscopy images. The image sequences show stem cells together with blood vessels, enabling quantification of the dynamic behaviors of stem cells in relation to their vascular niche, with applications in developmental and cancer biology. Our application automatically segments, tracks, and lineages the image sequence data and then allows the user to view and edit the results of automated algorithms in a stereoscopic 3-D window while simultaneously viewing the stem cell lineage tree in a 2-D window. Using the GPU to store and render the image sequence data enables a hybrid computational approach. An inference-based approach utilizing user-provided edits to automatically correct related mistakes executes interactively on the system CPU while the GPU handles 3-D visualization tasks. Conclusions: By exploiting commodity computer gaming hardware, we have developed an application that can be run in the laboratory to facilitate rapid iteration through biological experiments. There is a pressing need for visualization and analysis tools for 5-D live cell image data. We combine accurate unsupervised processes with an intuitive visualization of the results. Our validation interface allows for each data set to be corrected to 100% accuracy, ensuring that downstream data analysis is accurate and verifiable. Our tool is the first to combine all of these aspects, leveraging the synergies obtained by utilizing validation information from stereo visualization to improve the low level image processing tasks.Comment: BioVis 2014 conferenc

    Automated tracing of myelinated axons and detection of the nodes of Ranvier in serial images of peripheral nerves

    Get PDF
    The development of realistic neuroanatomical models of peripheral nerves for simulation purposes requires the reconstruction of the morphology of the myelinated fibres in the nerve, including their nodes of Ranvier. Currently, this information has to be extracted by semimanual procedures, which severely limit the scalability of the experiments. In this contribution, we propose a supervised machine learning approach for the detailed reconstruction of the geometry of fibres inside a peripheral nerve based on its high-resolution serial section images. Learning from sparse expert annotations, the algorithm traces myelinated axons, even across the nodes of Ranvier. The latter are detected automatically. The approach is based on classifying the myelinated membranes in a supervised fashion, closing the membrane gaps by solving an assignment problem, and classifying the closed gaps for the nodes of Ranvier detection. The algorithm has been validated on two very different datasets: (i) rat vagus nerve subvolume, SBFSEM microscope, 200 × 200 × 200 nm resolution, (ii) rat sensory branch subvolume, confocal microscope, 384 × 384 × 800 nm resolution. For the first dataset, the algorithm correctly reconstructed 88% of the axons (241 out of 273) and achieved 92% accuracy on the task of Ranvier node detection. For the second dataset, the gap closing algorithm correctly closed 96.2% of the gaps, and 55% of axons were reconstructed correctly through the whole volume. On both datasets, training the algorithm on a small data subset and applying it to the full dataset takes a fraction of the time required by the currently used semiautomated protocols. Our software, raw data and ground truth annotations are available at http://hci.iwr.uni-heidelberg.de/Benchmarks/. The development version of the code can be found at https://github.com/RWalecki/ATMA

    Modeling Brain Circuitry over a Wide Range of Scales

    Get PDF
    If we are ever to unravel the mysteries of brain function at its most fundamental level, we will need a precise understanding of how its component neurons connect to each other. Electron Microscopes (EM) can now provide the nanometer resolution that is needed to image synapses, and therefore connections, while Light Microscopes (LM) see at the micrometer resolution required to model the 3D structure of the dendritic network. Since both the topology and the connection strength are integral parts of the brain's wiring diagram, being able to combine these two modalities is critically important. In fact, these microscopes now routinely produce high-resolution imagery in such large quantities that the bottleneck becomes automated processing and interpretation, which is needed for such data to be exploited to its full potential. In this paper, we briefly review the Computer Vision techniques we have developed at EPFL to address this need. They include delineating dendritic arbors from LM imagery, segmenting organelles from EM, and combining the two into a consistent representation
    • …
    corecore