3,456 research outputs found

    Learning a Bias Correction for Lidar-only Motion Estimation

    Full text link
    This paper presents a novel technique to correct for bias in a classical estimator using a learning approach. We apply a learned bias correction to a lidar-only motion estimation pipeline. Our technique trains a Gaussian process (GP) regression model using data with ground truth. The inputs to the model are high-level features derived from the geometry of the point-clouds, and the outputs are the predicted biases between poses computed by the estimator and the ground truth. The predicted biases are applied as a correction to the poses computed by the estimator. Our technique is evaluated on over 50km of lidar data, which includes the KITTI odometry benchmark and lidar datasets collected around the University of Toronto campus. After applying the learned bias correction, we obtained significant improvements to lidar odometry in all datasets tested. We achieved around 10% reduction in errors on all datasets from an already accurate lidar odometry algorithm, at the expense of only less than 1% increase in computational cost at run-time.Comment: 15th Conference on Computer and Robot Vision (CRV 2018

    DPC-Net: Deep Pose Correction for Visual Localization

    Full text link
    We present a novel method to fuse the power of deep networks with the computational efficiency of geometric and probabilistic localization algorithms. In contrast to other methods that completely replace a classical visual estimator with a deep network, we propose an approach that uses a convolutional neural network to learn difficult-to-model corrections to the estimator from ground-truth training data. To this end, we derive a novel loss function for learning SE(3) corrections based on a matrix Lie groups approach, with a natural formulation for balancing translation and rotation errors. We use this loss to train a Deep Pose Correction network (DPC-Net) that predicts corrections for a particular estimator, sensor and environment. Using the KITTI odometry dataset, we demonstrate significant improvements to the accuracy of a computationally-efficient sparse stereo visual odometry pipeline, that render it as accurate as a modern computationally-intensive dense estimator. Further, we show how DPC-Net can be used to mitigate the effect of poorly calibrated lens distortion parameters.Comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation (ICRA'18), Brisbane, Australia, May 21-25, 201

    Towards Full Automated Drive in Urban Environments: A Demonstration in GoMentum Station, California

    Full text link
    Each year, millions of motor vehicle traffic accidents all over the world cause a large number of fatalities, injuries and significant material loss. Automated Driving (AD) has potential to drastically reduce such accidents. In this work, we focus on the technical challenges that arise from AD in urban environments. We present the overall architecture of an AD system and describe in detail the perception and planning modules. The AD system, built on a modified Acura RLX, was demonstrated in a course in GoMentum Station in California. We demonstrated autonomous handling of 4 scenarios: traffic lights, cross-traffic at intersections, construction zones and pedestrians. The AD vehicle displayed safe behavior and performed consistently in repeated demonstrations with slight variations in conditions. Overall, we completed 44 runs, encompassing 110km of automated driving with only 3 cases where the driver intervened the control of the vehicle, mostly due to error in GPS positioning. Our demonstration showed that robust and consistent behavior in urban scenarios is possible, yet more investigation is necessary for full scale roll-out on public roads.Comment: Accepted to Intelligent Vehicles Conference (IV 2017
    corecore