1,332 research outputs found

    Automated data integration for developmental biological research

    Get PDF
    In an era exploding with genome-scale data, a major challenge for developmental biologists is how to extract significant clues from these publicly available data to benefit our studies of individual genes, and how to use them to improve our understanding of development at a systems level. Several studies have successfully demonstrated new approaches to classic developmental questions by computationally integrating various genome-wide data sets. Such computational approaches have shown great potential for facilitating research: instead of testing 20,000 genes, researchers might test 200 to the same effect. We discuss the nature and state of this art as it applies to developmental research

    An Improved, Bias-Reduced Probabilistic Functional Gene Network of Baker's Yeast, Saccharomyces cerevisiae

    Get PDF
    Background: Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations. Methodology/Principal Findings: We report a significantly improved version (v. 2) of a probabilistic functional gene network [1] of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis. Conclusions/Significance: YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome). YeastNet is available from http://www.yeastnet.org.This work was supported by grants from the N.S.F. (IIS-0325116, EIA-0219061), N.I.H. (GM06779-01,GM076536-01), Welch (F-1515), and a Packard Fellowship (EMM). These agencies were not involved in the design and conduct of the study, in the collection, analysis, and interpretation of the data, or in the preparation, review, or approval of the manuscript.Cellular and Molecular Biolog

    High-precision high-coverage functional inference from integrated data sources

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information obtained from diverse data sources can be combined in a principled manner using various machine learning methods to increase the reliability and range of knowledge about protein function. The result is a weighted functional linkage network (FLN) in which linked neighbors share at least one function with high probability. Precision is, however, low. Aiming to provide precise functional annotation for as many proteins as possible, we explore and propose a two-step framework for functional annotation (1) construction of a high-coverage and reliable FLN via machine learning techniques (2) development of a decision rule for the constructed FLN to optimize functional annotation.</p> <p>Results</p> <p>We first apply this framework to <it>Saccharomyces cerevisiae</it>. In the first step, we demonstrate that four commonly used machine learning methods, Linear SVM, Linear Discriminant Analysis, Naïve Bayes, and Neural Network, all combine heterogeneous data to produce reliable and high-coverage FLNs, in which the linkage weight more accurately estimates functional coupling of linked proteins than use individual data sources alone. In the second step, empirical tuning of an adjustable decision rule on the constructed FLN reveals that basing annotation on maximum edge weight results in the most precise annotation at high coverages. In particular at low coverage all rules evaluated perform comparably. At coverage above approximately 50%, however, they diverge rapidly. At full coverage, the maximum weight decision rule still has a precision of approximately 70%, whereas for other methods, precision ranges from a high of slightly more than 30%, down to 3%. In addition, a scoring scheme to estimate the precisions of individual predictions is also provided. Finally, tests of the robustness of the framework indicate that our framework can be successfully applied to less studied organisms.</p> <p>Conclusion</p> <p>We provide a general two-step function-annotation framework, and show that high coverage, high precision annotations can be achieved by constructing a high-coverage and reliable FLN via data integration followed by applying a maximum weight decision rule.</p

    Consensus and meta-analysis regulatory networks for combining multiple microarray gene expression datasets

    Get PDF
    Microarray data is a key source of experimental data for modelling gene regulatory interactions from expression levels. With the rapid increase of publicly available microarray data comes the opportunity to produce regulatory network models based on multiple datasets. Such models are potentially more robust with greater confidence, and place less reliance on a single dataset. However, combining datasets directly can be difficult as experiments are often conducted on different microarray platforms, and in different laboratories leading to inherent biases in the data that are not always removed through pre-processing such as normalisation. In this paper we compare two frameworks for combining microarray datasets to model regulatory networks: pre- and post-learning aggregation. In pre-learning approaches, such as using simple scale-normalisation prior to the concatenation of datasets, a model is learnt from a combined dataset, whilst in post-learning aggregation individual models are learnt from each dataset and the models are combined. We present two novel approaches for post-learning aggregation, each based on aggregating high-level features of Bayesian network models that have been generated from different microarray expression datasets. Meta-analysis Bayesian networks are based on combining statistical confidences attached to network edges whilst Consensus Bayesian networks identify consistent network features across all datasets. We apply both approaches to multiple datasets from synthetic and real (Escherichia coli and yeast) networks and demonstrate that both methods can improve on networks learnt from a single dataset or an aggregated dataset formed using a standard scale-normalisation

    Discovery of biological networks from diverse functional genomic data

    Get PDF
    We have developed a general probabilistic system for query-based discovery of pathway-specific networks through integration of diverse genome-wide data. This framework was validated by accurately recovering known networks for 31 biological processes in Saccharomyces cerevisiae and experimentally verifying predictions for the process of chromosomal segregation. Our system, bioPIXIE, a public, comprehensive system for integration, analysis, and visualization of biological network predictions for S. cerevisiae, is freely accessible over the worldwide web

    AVID: An integrative framework for discovering functional relationships among proteins

    Get PDF
    BACKGROUND: Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments. RESULTS: We present AVID, a computational method that uses a multi-stage learning framework to integrate experimental results with sequence information, generating networks reflecting functional similarities among proteins. We illustrate use of the networks by making predictions of detailed Gene Ontology (GO) annotations in three categories: molecular function, biological process, and cellular component. Applied to the yeast Saccharomyces cerevisiae, AVID provides 37,451 pair-wise functional linkages between 4,191 proteins. These relationships are ~65–78% accurate, as assessed by cross-validation testing. Assignments of highly detailed functional descriptors to proteins, based on the networks, are estimated to be ~67% accurate for GO categories describing molecular function and cellular component and ~52% accurate for terms describing biological process. The predictions cover 1,490 proteins with no previous annotation in GO and also assign more detailed functions to many proteins annotated only with less descriptive terms. Predictions made by AVID are largely distinct from those made by other methods. Out of 37,451 predicted pair-wise relationships, the greatest number shared in common with another method is 3,413. CONCLUSION: AVID provides three networks reflecting functional associations among proteins. We use these networks to generate new, highly detailed functional predictions for roughly half of the yeast proteome that are reliable enough to drive targeted experimental investigations. The predictions suggest many specific, testable hypotheses. All of the data are available as downloadable files as well as through an interactive website at . Thus, AVID will be a valuable resource for experimental biologists

    AVID: An integrative framework for discovering functional relationships among proteins

    Get PDF
    BACKGROUND: Determining the functions of uncharacterized proteins is one of the most pressing problems in the post-genomic era. Large scale protein-protein interaction assays, global mRNA expression analyses and systematic protein localization studies provide experimental information that can be used for this purpose. The data from such experiments contain many false positives and false negatives, but can be processed using computational methods to provide reliable information about protein-protein relationships and protein function. An outstanding and important goal is to predict detailed functional annotation for all uncharacterized proteins that is reliable enough to effectively guide experiments. RESULTS: We present AVID, a computational method that uses a multi-stage learning framework to integrate experimental results with sequence information, generating networks reflecting functional similarities among proteins. We illustrate use of the networks by making predictions of detailed Gene Ontology (GO) annotations in three categories: molecular function, biological process, and cellular component. Applied to the yeast Saccharomyces cerevisiae, AVID provides 37,451 pair-wise functional linkages between 4,191 proteins. These relationships are ~65–78% accurate, as assessed by cross-validation testing. Assignments of highly detailed functional descriptors to proteins, based on the networks, are estimated to be ~67% accurate for GO categories describing molecular function and cellular component and ~52% accurate for terms describing biological process. The predictions cover 1,490 proteins with no previous annotation in GO and also assign more detailed functions to many proteins annotated only with less descriptive terms. Predictions made by AVID are largely distinct from those made by other methods. Out of 37,451 predicted pair-wise relationships, the greatest number shared in common with another method is 3,413. CONCLUSION: AVID provides three networks reflecting functional associations among proteins. We use these networks to generate new, highly detailed functional predictions for roughly half of the yeast proteome that are reliable enough to drive targeted experimental investigations. The predictions suggest many specific, testable hypotheses. All of the data are available as downloadable files as well as through an interactive website at . Thus, AVID will be a valuable resource for experimental biologists

    Assessing the functional structure of genomic data

    Get PDF
    Motivation: The availability of genome-scale data has enabled an abundance of novel analysis techniques for investigating a variety of systems-level biological relationships. As thousands of such datasets become available, they provide an opportunity to study high-level associations between cellular pathways and processes. This also allows the exploration of shared functional enrichments between diverse biological datasets, and it serves to direct experimenters to areas of low data coverage or with high probability of new discoveries
    corecore