70,965 research outputs found

    Multi-output regression with structurally incomplete target labels : A case study of modelling global vegetation cover

    Get PDF
    Publisher Copyright: © 2022 The AuthorsWeakly-supervised learning has recently emerged in the classification context where true labels are often scarce or unreliable. However, this learning setting has not yet been extensively analyzed for regression problems, which are typical in macroecology. We further define a novel computational setting of structurally noisy and incomplete target labels, which arises, for example, when the multi-output regression task defines a distribution such that outputs must sum up to unity. We propose an algorithmic approach to reduce noise in the target labels and improve predictions. We evaluate this setting with a case study in global vegetation modelling, which involves building a model to predict the distribution of vegetation cover from climatic conditions based on global remote sensing data. We compare the performance of the proposed approach to several incomplete target baselines. The results indicate that the error in the targets can be reduced by our proposed partial-imputation algorithm. We conclude that handling structural incompleteness in the target labels instead of using only complete observations for training helps to better capture global associations between vegetation and climate.Peer reviewe

    Exploring Structured Semantic Prior for Multi Label Recognition with Incomplete Labels

    Full text link
    Multi-label recognition (MLR) with incomplete labels is very challenging. Recent works strive to explore the image-to-label correspondence in the vision-language model, \ie, CLIP, to compensate for insufficient annotations. In spite of promising performance, they generally overlook the valuable prior about the label-to-label correspondence. In this paper, we advocate remedying the deficiency of label supervision for the MLR with incomplete labels by deriving a structured semantic prior about the label-to-label correspondence via a semantic prior prompter. We then present a novel Semantic Correspondence Prompt Network (SCPNet), which can thoroughly explore the structured semantic prior. A Prior-Enhanced Self-Supervised Learning method is further introduced to enhance the use of the prior. Comprehensive experiments and analyses on several widely used benchmark datasets show that our method significantly outperforms existing methods on all datasets, well demonstrating the effectiveness and the superiority of our method. Our code will be available at https://github.com/jameslahm/SCPNet.Comment: Accepted by IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 202
    corecore