1,561 research outputs found

    Learning Whole-body Motor Skills for Humanoids

    Get PDF
    This paper presents a hierarchical framework for Deep Reinforcement Learning that acquires motor skills for a variety of push recovery and balancing behaviors, i.e., ankle, hip, foot tilting, and stepping strategies. The policy is trained in a physics simulator with realistic setting of robot model and low-level impedance control that are easy to transfer the learned skills to real robots. The advantage over traditional methods is the integration of high-level planner and feedback control all in one single coherent policy network, which is generic for learning versatile balancing and recovery motions against unknown perturbations at arbitrary locations (e.g., legs, torso). Furthermore, the proposed framework allows the policy to be learned quickly by many state-of-the-art learning algorithms. By comparing our learned results to studies of preprogrammed, special-purpose controllers in the literature, self-learned skills are comparable in terms of disturbance rejection but with additional advantages of producing a wide range of adaptive, versatile and robust behaviors.Comment: 2018 IEEE-RAS 18th International Conference on Humanoid Robots (Humanoids

    Learning Task Priorities from Demonstrations

    Full text link
    Bimanual operations in humanoids offer the possibility to carry out more than one manipulation task at the same time, which in turn introduces the problem of task prioritization. We address this problem from a learning from demonstration perspective, by extending the Task-Parameterized Gaussian Mixture Model (TP-GMM) to Jacobian and null space structures. The proposed approach is tested on bimanual skills but can be applied in any scenario where the prioritization between potentially conflicting tasks needs to be learned. We evaluate the proposed framework in: two different tasks with humanoids requiring the learning of priorities and a loco-manipulation scenario, showing that the approach can be exploited to learn the prioritization of multiple tasks in parallel.Comment: Accepted for publication at the IEEE Transactions on Robotic

    HumanMimic: Learning Natural Locomotion and Transitions for Humanoid Robot via Wasserstein Adversarial Imitation

    Full text link
    Transferring human motion skills to humanoid robots remains a significant challenge. In this study, we introduce a Wasserstein adversarial imitation learning system, allowing humanoid robots to replicate natural whole-body locomotion patterns and execute seamless transitions by mimicking human motions. First, we present a unified primitive-skeleton motion retargeting to mitigate morphological differences between arbitrary human demonstrators and humanoid robots. An adversarial critic component is integrated with Reinforcement Learning (RL) to guide the control policy to produce behaviors aligned with the data distribution of mixed reference motions. Additionally, we employ a specific Integral Probabilistic Metric (IPM), namely the Wasserstein-1 distance with a novel soft boundary constraint to stabilize the training process and prevent model collapse. Our system is evaluated on a full-sized humanoid JAXON in the simulator. The resulting control policy demonstrates a wide range of locomotion patterns, including standing, push-recovery, squat walking, human-like straight-leg walking, and dynamic running. Notably, even in the absence of transition motions in the demonstration dataset, robots showcase an emerging ability to transit naturally between distinct locomotion patterns as desired speed changes

    Learning a Unified Control Policy for Safe Falling

    Full text link
    Being able to fall safely is a necessary motor skill for humanoids performing highly dynamic tasks, such as running and jumping. We propose a new method to learn a policy that minimizes the maximal impulse during the fall. The optimization solves for both a discrete contact planning problem and a continuous optimal control problem. Once trained, the policy can compute the optimal next contacting body part (e.g. left foot, right foot, or hands), contact location and timing, and the required joint actuation. We represent the policy as a mixture of actor-critic neural network, which consists of n control policies and the corresponding value functions. Each pair of actor-critic is associated with one of the n possible contacting body parts. During execution, the policy corresponding to the highest value function will be executed while the associated body part will be the next contact with the ground. With this mixture of actor-critic architecture, the discrete contact sequence planning is solved through the selection of the best critics while the continuous control problem is solved by the optimization of actors. We show that our policy can achieve comparable, sometimes even higher, rewards than a recursive search of the action space using dynamic programming, while enjoying 50 to 400 times of speed gain during online execution

    Teaching humanoid robotics by means of human teleoperation through RGB-D sensors

    Get PDF
    This paper presents a graduate course project on humanoid robotics offered by the University of Padova. The target is to safely lift an object by teleoperating a small humanoid. Students have to map human limbs into robot joints, guarantee the robot stability during the motion, and teleoperate the robot to perform the correct movement. We introduce the following innovative aspects with respect to classical robotic classes: i) the use of humanoid robots as teaching tools; ii) the simplification of the stable locomotion problem by exploiting the potential of teleoperation; iii) the adoption of a Project-Based Learning constructivist approach as teaching methodology. The learning objectives of both course and project are introduced and compared with the students\u2019 background. Design and constraints students have to deal with are reported, together with the amount of time they and their instructors dedicated to solve tasks. A set of evaluation results are provided in order to validate the authors\u2019 purpose, including the students\u2019 personal feedback. A discussion about possible future improvements is reported, hoping to encourage further spread of educational robotics in schools at all levels

    Robot Composite Learning and the Nunchaku Flipping Challenge

    Full text link
    Advanced motor skills are essential for robots to physically coexist with humans. Much research on robot dynamics and control has achieved success on hyper robot motor capabilities, but mostly through heavily case-specific engineering. Meanwhile, in terms of robot acquiring skills in a ubiquitous manner, robot learning from human demonstration (LfD) has achieved great progress, but still has limitations handling dynamic skills and compound actions. In this paper, we present a composite learning scheme which goes beyond LfD and integrates robot learning from human definition, demonstration, and evaluation. The method tackles advanced motor skills that require dynamic time-critical maneuver, complex contact control, and handling partly soft partly rigid objects. We also introduce the "nunchaku flipping challenge", an extreme test that puts hard requirements to all these three aspects. Continued from our previous presentations, this paper introduces the latest update of the composite learning scheme and the physical success of the nunchaku flipping challenge

    A Developmental Neuro-Robotics Approach for Boosting the Recognition of Handwritten Digits

    Get PDF
    Developmental psychology and neuroimaging research identified a close link between numbers and fingers, which can boost the initial number knowledge in children. Recent evidence shows that a simulation of the children's embodied strategies can improve the machine intelligence too. This article explores the application of embodied strategies to convolutional neural network models in the context of developmental neurorobotics, where the training information is likely to be gradually acquired while operating rather than being abundant and fully available as the classical machine learning scenarios. The experimental analyses show that the proprioceptive information from the robot fingers can improve network accuracy in the recognition of handwritten Arabic digits when training examples and epochs are few. This result is comparable to brain imaging and longitudinal studies with young children. In conclusion, these findings also support the relevance of the embodiment in the case of artificial agents’ training and show a possible way for the humanization of the learning process, where the robotic body can express the internal processes of artificial intelligence making it more understandable for humans
    corecore