6,876 research outputs found

    Query expansion with naive bayes for searching distributed collections

    Get PDF
    The proliferation of online information resources increases the importance of effective and efficient distributed searching. However, the problem of word mismatch seriously hurts the effectiveness of distributed information retrieval. Automatic query expansion has been suggested as a technique for dealing with the fundamental issue of word mismatch. In this paper, we propose a method - query expansion with Naive Bayes to address the problem, discuss its implementation in IISS system, and present experimental results demonstrating its effectiveness. Such technique not only enhances the discriminatory power of typical queries for choosing the right collections but also hence significantly improves retrieval results

    Boosting Applied to Word Sense Disambiguation

    Get PDF
    In this paper Schapire and Singer's AdaBoost.MH boosting algorithm is applied to the Word Sense Disambiguation (WSD) problem. Initial experiments on a set of 15 selected polysemous words show that the boosting approach surpasses Naive Bayes and Exemplar-based approaches, which represent state-of-the-art accuracy on supervised WSD. In order to make boosting practical for a real learning domain of thousands of words, several ways of accelerating the algorithm by reducing the feature space are studied. The best variant, which we call LazyBoosting, is tested on the largest sense-tagged corpus available containing 192,800 examples of the 191 most frequent and ambiguous English words. Again, boosting compares favourably to the other benchmark algorithms.Comment: 12 page

    Locally weighted learning: How and when does it work in Bayesian networks?

    Full text link
    © 2016, Taylor and Francis Ltd. All rights reserved. Bayesian network (BN), a simple graphical notation for conditional independence assertions, is promised to represent the probabilistic relationships between diseases and symptoms. Learning the structure of a Bayesian network classifier (BNC) encodes conditional independence assumption between attributes, which may deteriorate the classification performance. One major approach to mitigate the BNC’s primary weakness (the attributes independence assumption) is the locally weighted approach. And this type of approach has been proved to achieve good performance for naive Bayes, a BNC with simple structure. However, we do not know whether or how effective it works for improving the performance of the complex BNC. In this paper, we first do a survey on the complex structure models for BNCs and their improvements, then carry out a systematically experimental analysis to investigate the effectiveness of locally weighted method for complex BNCs, e.g., tree-augmented naive Bayes (TAN), averaged one-dependence estimators AODE and hidden naive Bayes (HNB), measured by classification accuracy (ACC) and the area under the ROC curve ranking (AUC). Experiments and comparisons on 36 benchmark data sets collected from University of California, Irvine (UCI) in Weka system demonstrate that locally weighting technologies just slightly outperforms unweighted complex BNCs on ACC and AUC. In other words, although locally weighting could significantly improve the performance of NB (a BNC with simple structure), it could not work well on BNCs with complex structures. This is because the performance improvements of BNCs are attributed to their structures not the locally weighting

    Naive Bayes and Exemplar-Based approaches to Word Sense Disambiguation Revisited

    Full text link
    This paper describes an experimental comparison between two standard supervised learning methods, namely Naive Bayes and Exemplar-based classification, on the Word Sense Disambiguation (WSD) problem. The aim of the work is twofold. Firstly, it attempts to contribute to clarify some confusing information about the comparison between both methods appearing in the related literature. In doing so, several directions have been explored, including: testing several modifications of the basic learning algorithms and varying the feature space. Secondly, an improvement of both algorithms is proposed, in order to deal with large attribute sets. This modification, which basically consists in using only the positive information appearing in the examples, allows to improve greatly the efficiency of the methods, with no loss in accuracy. The experiments have been performed on the largest sense-tagged corpus available containing the most frequent and ambiguous English words. Results show that the Exemplar-based approach to WSD is generally superior to the Bayesian approach, especially when a specific metric for dealing with symbolic attributes is used.Comment: 5 page

    A Confidence-Based Approach for Balancing Fairness and Accuracy

    Full text link
    We study three classical machine learning algorithms in the context of algorithmic fairness: adaptive boosting, support vector machines, and logistic regression. Our goal is to maintain the high accuracy of these learning algorithms while reducing the degree to which they discriminate against individuals because of their membership in a protected group. Our first contribution is a method for achieving fairness by shifting the decision boundary for the protected group. The method is based on the theory of margins for boosting. Our method performs comparably to or outperforms previous algorithms in the fairness literature in terms of accuracy and low discrimination, while simultaneously allowing for a fast and transparent quantification of the trade-off between bias and error. Our second contribution addresses the shortcomings of the bias-error trade-off studied in most of the algorithmic fairness literature. We demonstrate that even hopelessly naive modifications of a biased algorithm, which cannot be reasonably said to be fair, can still achieve low bias and high accuracy. To help to distinguish between these naive algorithms and more sensible algorithms we propose a new measure of fairness, called resilience to random bias (RRB). We demonstrate that RRB distinguishes well between our naive and sensible fairness algorithms. RRB together with bias and accuracy provides a more complete picture of the fairness of an algorithm
    corecore