369 research outputs found

    Navigation and wayfinding in learning spaces in 3D virtual worlds

    Get PDF
    There is a lack of published research on the design guidelines of learning spaces in virtual worlds. Therefore, when institutions aspire to create learning spaces in Second Life, there are few studies or guidelines to inform them except for individual case studies. The Design of Learning Spaces in 3D Virtual Environments (DELVE) project, funded by the Joint Information Systems Committee in the UK, was one of the first initiatives that identified through empirical investigations the usability problems associated with learning spaces in virtual worlds and the potential impact on student experience. The findings of the DELVE project revealed that applying architectural principles of real-world designs to virtual worlds may not be sufficient. In fact, design principles from urban planning, Human–Computer Interaction (HCI), web usability, geography, and psychology influence the design of learning spaces in virtual worlds. In DELVE, the researchers derived several usability guidelines: form should follow function, that is, that the shape of a building or object should be primarily based upon its intended function or purpose; use real-world metaphors such as mailboxes for students to leave messages, or search pods similar to real-world information kiosks; consider realism for familiarity and comfort; design for storytelling; or design to orient the user at the landing point, etc. However, the investigations in DELVE identified that the key usability problems experienced by users in 3D learning spaces are related to navigation and wayfinding. In this chapter, we report on the Navigation and Wayfinding (NAVY) project which builds on the findings of the DELVE project. As the most commonly used virtual world for education, Second Life was the logical choice for conducting the NAVY project research. Based upon empirical investigations of a number of islands in Second Life (an island is a space which is analogous to a website in a 2D environment) involving user-based studies, heuristic evaluations, and iterative reviews of the heuristics by usability experts, we have derived over 200 guidelines for the design of learning spaces in virtual worlds.

    A NATURALISTIC COMPUTATIONAL MODEL OF HUMAN BEHAVIOR IN NAVIGATION AND SEARCH TASKS

    Get PDF
    Planning, navigation, and search are fundamental human cognitive abilities central to spatial problem solving in search and rescue, law enforcement, and military operations. Despite a wealth of literature concerning naturalistic spatial problem solving in animals, literature on naturalistic spatial problem solving in humans is comparatively lacking and generally conducted by separate camps among which there is little crosstalk. Addressing this deficiency will allow us to predict spatial decision making in operational environments, and understand the factors leading to those decisions. The present dissertation is comprised of two related efforts, (1) a set of empirical research studies intended to identify characteristics of planning, execution, and memory in naturalistic spatial problem solving tasks, and (2) a computational modeling effort to develop a model of naturalistic spatial problem solving. The results of the behavioral studies indicate that problem space hierarchical representations are linear in shape, and that human solutions are produced according to multiple optimization criteria. The Mixed Criteria Model presented in this dissertation accounts for global and local human performance in a traditional and naturalistic Traveling Salesman Problem. The results of the empirical and modeling efforts hold implications for basic and applied science in domains such as problem solving, operations research, human-computer interaction, and artificial intelligence

    Turning the shelves: empirical findings and space syntax analyses of two virtual supermarket variations

    Get PDF
    The spatial structure of a virtual supermarket was systematically varied to investigate human behavior and cognitive processes in unusual building configurations. The study builds upon experiments in a regular supermarket, which serve as a baseline case. In a between-participant design a total of 41 participants completed a search task in two different virtual supermarket environments. For 21 participants the supermarket shelves were turned towards them at a 45° angle when entering the store, giving high visual access to product categories and products. For 20 participants the shelves were placed in exactly the opposite direction obstructing a quick development of shopping goods dependencies. The obtained differences in search performance between the two conditions are analyzed using space syntax analyses and comparisons made of environmental features and participants’ actual search path trajectories

    Navigating complex buildings: cognition, neuroscience and architectural design

    Get PDF
    This paper is in two sections, the first section presents a review of recent research in the areas of neuroscience, cognitive science and architecture with particular respect to what is currently understood about how buildingusers find their way around complex buildings. It goes on to define four areas of promising, potential future research located on the boundaries between these three disciplines, these being: spatial knowledge acquisition, orientation, multilevel environments and environment intelligibility. In the second half of the paper, it suggests how such current research and/or any future program of research could be used to aid architects in the design of new buildings. One such method suggested is the creation of designguidelines or heuristics based upon research into navigation and wayfinding. The paper concludes with an example list of eight sample guidelines

    Gender differences in visuospatial planning: an eye movements study.

    Get PDF
    Gender studies report a male advantage in several visuospatial abilities. Only few studies however, have evaluated differences in visuospatial planning behaviour with regard to gender. This study was aimed at exploring whether gender may affect the choice of cognitive strategies in a visuospatial planning task and, if oculomotor measures could assist in disentangling the cognitive processes involved. A computerised task based on the travelling salesperson problem paradigm, the Maps test, was used to investigate these issues. Participants were required to optimise time and space of a path travelling among a set of sub-goals in a spatially constrained environment. Behavioural results suggest that there are no gender differences in the initial visual processing of the stimuli, but rather during the execution of the plan, with males showing a shorter execution time and a higher path length optimisation than females. Males often showed changes of heuristics during the execution while females seemed to prefer a constant strategy. Moreover, a better performance in behavioural and oculomotor measures seemed to suggest that males are more able than females in either the optimisation of spatial features or the realisation of the planned scheme. Despite inconclusive findings, the results support previous research and provide insight into the level of cognitive processing involved in navigation and planning tasks, with regard to the influence of gender

    Spatial representation for navigation in animats

    Get PDF
    This article considers the problem of spatial representation for animat navigation systems. It is proposed that the global navigation task, or "wayfinding, " is best supported by multiple interacting subsystems, each of which builds its own partial representation of relevant world knowledge. Evidence from the study of animal navigation is reviewed to demonstrate that similar principles underlie the wayfinding behavior of animals, including humans. A simulated wayfinding system is described that embodies and illustrates several of the themes identified with animat navigation. This system constructs a network of partial models of the quantitative spatial relations between groups of salient landmarks. Navigation tasks are solved by propagating egocentric view information through this network, using a simple but effective heuristic to arbitrate between multiple solutions

    Sailing:Cognition, Action, Communication

    Get PDF
    How do humans perceive and think about space, and how can this be represented adequately? For everyday activities such as locating objects or places, route planning, and the like, many insights have been gained over the past few decades, feeding into theories of spatial cognition and frameworks for spatial information science. In this paper, we explore sailing as a more specialized domain that has not yet been considered in this way, but has a lot to offer precisely because of its peculiarities. Sailing involves ways of thinking about space that are not normally required (or even acquired) in everyday life. Movement in this domain is based on a combination of external forces and internal (human) intentions that impose various kinds of directionality, affecting local action as well as global planning. Sailing terminology is spatial to a high extent, and involves a range of concepts that have received little attention in the spatial cognition community. We explore the area by focusing on the core features of cognition, action, and communication, and suggest a range of promising future areas of research in this domain as a showcase of the fascinating flexibility of human spatial cognition
    corecore