2,929 research outputs found

    Visual Odometry using Convolutional Neural Networks

    Get PDF
    Visual odometry is the process of tracking an agent\u27s motion over time using a visual sensor. The visual odometry problem has only been recently solved using traditional, non-machine learning techniques. Despite the success of neural networks at many related problems such as object recognition, feature detection, and optical flow, visual odometry still has not been solved with a deep learning technique. This paper attempts to implement several Convolutional Neural Networks to solve the visual odometry problem and compare slight variations in data preprocessing. The work presented is a step toward reaching a legitimate neural network solution

    Learning Visual Odometry with a Convolutional Network

    Full text link

    Visual odometry with depth-wise separable convolution and quaternion neural networks

    Get PDF
    Monocular visual odometry is a fundamental problem in computer vision and it was extensively studied in literature. The vast majority of visual odometry algorithms are based on a standard pipeline consisting in feature detection, feature matching, motion estimation and local optimization. Only recently, deep learning approaches have shown cutting-edge performance, replacing the standard pipeline with an end-to-end solution. One of the main advantages of deep learning approaches over the standard methods is the reduced inference time, that is an important requirement for the application of visual odometry in real-time. Less emphasis, however, has been placed on memory requirements and training efficiency. The memory footprint, in particular, is important for real world applications such as robot navigation or autonomous driving, where the devices have limited memory resources. In this paper we tackle both aspects introducing novel architectures based on Depth-Wise Separable Convolutional Neural Network and deep Quaternion Recurrent Convolutional Neural Network. In particular, we obtain equal or better accuracy with respect to the other state-of-the-art methods on the KITTI VO dataset with a reduction of the number of parameters and a speed-up in the inference time

    GANVO: Unsupervised Deep Monocular Visual Odometry and Depth Estimation with Generative Adversarial Networks

    Full text link
    In the last decade, supervised deep learning approaches have been extensively employed in visual odometry (VO) applications, which is not feasible in environments where labelled data is not abundant. On the other hand, unsupervised deep learning approaches for localization and mapping in unknown environments from unlabelled data have received comparatively less attention in VO research. In this study, we propose a generative unsupervised learning framework that predicts 6-DoF pose camera motion and monocular depth map of the scene from unlabelled RGB image sequences, using deep convolutional Generative Adversarial Networks (GANs). We create a supervisory signal by warping view sequences and assigning the re-projection minimization to the objective loss function that is adopted in multi-view pose estimation and single-view depth generation network. Detailed quantitative and qualitative evaluations of the proposed framework on the KITTI and Cityscapes datasets show that the proposed method outperforms both existing traditional and unsupervised deep VO methods providing better results for both pose estimation and depth recovery.Comment: ICRA 2019 - accepte

    DPC-Net: Deep Pose Correction for Visual Localization

    Full text link
    We present a novel method to fuse the power of deep networks with the computational efficiency of geometric and probabilistic localization algorithms. In contrast to other methods that completely replace a classical visual estimator with a deep network, we propose an approach that uses a convolutional neural network to learn difficult-to-model corrections to the estimator from ground-truth training data. To this end, we derive a novel loss function for learning SE(3) corrections based on a matrix Lie groups approach, with a natural formulation for balancing translation and rotation errors. We use this loss to train a Deep Pose Correction network (DPC-Net) that predicts corrections for a particular estimator, sensor and environment. Using the KITTI odometry dataset, we demonstrate significant improvements to the accuracy of a computationally-efficient sparse stereo visual odometry pipeline, that render it as accurate as a modern computationally-intensive dense estimator. Further, we show how DPC-Net can be used to mitigate the effect of poorly calibrated lens distortion parameters.Comment: In IEEE Robotics and Automation Letters (RA-L) and presented at the IEEE International Conference on Robotics and Automation (ICRA'18), Brisbane, Australia, May 21-25, 201
    • …
    corecore