335 research outputs found

    Crowd Saliency Detection via Global Similarity Structure

    Full text link
    It is common for CCTV operators to overlook inter- esting events taking place within the crowd due to large number of people in the crowded scene (i.e. marathon, rally). Thus, there is a dire need to automate the detection of salient crowd regions acquiring immediate attention for a more effective and proactive surveillance. This paper proposes a novel framework to identify and localize salient regions in a crowd scene, by transforming low-level features extracted from crowd motion field into a global similarity structure. The global similarity structure representation allows the discovery of the intrinsic manifold of the motion dynamics, which could not be captured by the low-level representation. Ranking is then performed on the global similarity structure to identify a set of extrema. The proposed approach is unsupervised so learning stage is eliminated. Experimental results on public datasets demonstrates the effectiveness of exploiting such extrema in identifying salient regions in various crowd scenarios that exhibit crowding, local irregular motion, and unique motion areas such as sources and sinks.Comment: Accepted in ICPR 2014 (Oral). Mei Kuan Lim and Ven Jyn Kok share equal contribution

    Log-Euclidean Bag of Words for Human Action Recognition

    Full text link
    Representing videos by densely extracted local space-time features has recently become a popular approach for analysing actions. In this paper, we tackle the problem of categorising human actions by devising Bag of Words (BoW) models based on covariance matrices of spatio-temporal features, with the features formed from histograms of optical flow. Since covariance matrices form a special type of Riemannian manifold, the space of Symmetric Positive Definite (SPD) matrices, non-Euclidean geometry should be taken into account while discriminating between covariance matrices. To this end, we propose to embed SPD manifolds to Euclidean spaces via a diffeomorphism and extend the BoW approach to its Riemannian version. The proposed BoW approach takes into account the manifold geometry of SPD matrices during the generation of the codebook and histograms. Experiments on challenging human action datasets show that the proposed method obtains notable improvements in discrimination accuracy, in comparison to several state-of-the-art methods

    Measuring Crowd Collectiveness

    Full text link
    Collective motions are common in crowd systems and have attracted a great deal of attention in a variety of mul-tidisciplinary fields. Collectiveness, which indicates the degree of individuals acting as a union in collective mo-tion, is a fundamental and universal measurement for vari-ous crowd systems. By integrating path similarities among crowds on collective manifold, this paper proposes a de-scriptor of collectiveness and an efficient computation for the crowd and its constituent individuals. The algorithm of the Collective Merging is then proposed to detect collective motions from random motions. We validate the effective-ness and robustness of the proposed collectiveness descrip-tor on the system of self-driven particles. We then compare the collectiveness descriptor to human perception for col-lective motion and show high consistency. Our experiments regarding the detection of collective motions and the mea-surement of collectiveness in videos of pedestrian crowds and bacteria colony demonstrate a wide range of applica-tions of the collectiveness descriptor1. 1

    STV-based Video Feature Processing for Action Recognition

    Get PDF
    In comparison to still image-based processes, video features can provide rich and intuitive information about dynamic events occurred over a period of time, such as human actions, crowd behaviours, and other subject pattern changes. Although substantial progresses have been made in the last decade on image processing and seen its successful applications in face matching and object recognition, video-based event detection still remains one of the most difficult challenges in computer vision research due to its complex continuous or discrete input signals, arbitrary dynamic feature definitions, and the often ambiguous analytical methods. In this paper, a Spatio-Temporal Volume (STV) and region intersection (RI) based 3D shape-matching method has been proposed to facilitate the definition and recognition of human actions recorded in videos. The distinctive characteristics and the performance gain of the devised approach stemmed from a coefficient factor-boosted 3D region intersection and matching mechanism developed in this research. This paper also reported the investigation into techniques for efficient STV data filtering to reduce the amount of voxels (volumetric-pixels) that need to be processed in each operational cycle in the implemented system. The encouraging features and improvements on the operational performance registered in the experiments have been discussed at the end

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art

    Quantifying and Transferring Contextual Information in Object Detection

    Get PDF
    (c) 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other work

    Pedestrian Detection via Classification on Riemannian Manifolds

    Get PDF
    We present a new algorithm to detect pedestrian in still images utilizing covariance matrices as object descriptors. Since the descriptors do not form a vector space, well known machine learning techniques are not well suited to learn the classifiers. The space of d-dimensional nonsingular covariance matrices can be represented as a connected Riemannian manifold. The main contribution of the paper is a novel approach for classifying points lying on a connected Riemannian manifold using the geometry of the space. The algorithm is tested on INRIA and DaimlerChrysler pedestrian datasets where superior detection rates are observed over the previous approaches

    Coupling camera-tracked humans with a simulated virtual crowd

    Get PDF
    Our objective with this paper is to show how we can couple a group of real people and a simulated crowd of virtual humans. We attach group behaviors to the simulated humans to get a plausible reaction to real people. We use a two stage system: in the first stage, a group of people are segmented from a live video, then a human detector algorithm extracts the positions of the people in the video, which are finally used to feed the second stage, the simulation system. The positions obtained by this process allow the second module to render the real humans as avatars in the scene, while the behavior of additional virtual humans is determined by using a simulation based on a social forces model. Developing the method required three specific contributions: a GPU implementation of the codebook algorithm that includes an auxiliary codebook to improve the background subtraction against illumination changes; the use of semantic local binary patterns as a human descriptor; the parallelization of a social forces model, in which we solve a case of agents merging with each other. The experimental results show how a large virtual crowd reacts to over a dozen humans in a real environment.Peer ReviewedPostprint (author’s final draft
    • …
    corecore