26 research outputs found

    Automatic handwriter identification using advanced machine learning

    Get PDF
    Handwriter identification a challenging problem especially for forensic investigation. This topic has received significant attention from the research community and several handwriter identification systems were developed for various applications including forensic science, document analysis and investigation of the historical documents. This work is part of an investigation to develop new tools and methods for Arabic palaeography, which is is the study of handwritten material, particularly ancient manuscripts with missing writers, dates, and/or places. In particular, the main aim of this research project is to investigate and develop new techniques and algorithms for the classification and analysis of ancient handwritten documents to support palaeographic studies. Three contributions were proposed in this research. The first is concerned with the development of a text line extraction algorithm on colour and greyscale historical manuscripts. The idea uses a modified bilateral filtering approach to adaptively smooth the images while still preserving the edges through a nonlinear combination of neighboring image values. The proposed algorithm aims to compute a median and a separating seam and has been validated to deal with both greyscale and colour historical documents using different datasets. The results obtained suggest that our proposed technique yields attractive results when compared against a few similar algorithms. The second contribution proposes to deploy a combination of Oriented Basic Image features and the concept of graphemes codebook in order to improve the recognition performances. The proposed algorithm is capable to effectively extract the most distinguishing handwriter’s patterns. The idea consists of judiciously combining a multiscale feature extraction with the concept of grapheme to allow for the extraction of several discriminating features such as handwriting curvature, direction, wrinkliness and various edge-based features. The technique was validated for identifying handwriters using both Arabic and English writings captured as scanned images using the IAM dataset for English handwriting and ICFHR 2012 dataset for Arabic handwriting. The results obtained clearly demonstrate the effectiveness of the proposed method when compared against some similar techniques. The third contribution is concerned with an offline handwriter identification approach based on the convolutional neural network technology. At the first stage, the Alex-Net architecture was employed to learn image features (handwritten scripts) and the features obtained from the fully connected layers of the model. Then, a Support vector machine classifier is deployed to classify the writing styles of the various handwriters. In this way, the test scripts can be classified by the CNN training model for further classification. The proposed approach was evaluated based on Arabic Historical datasets; Islamic Heritage Project (IHP) and Qatar National Library (QNL). The obtained results demonstrated that the proposed model achieved superior performances when compared to some similar method

    BRAKE: Biometric Resilient Authenticated Key Exchange

    Get PDF
    Biometric data are uniquely suited for connecting individuals to their digital identities. Deriving cryptographic key exchange from successful biometric authentication therefore gives an additional layer of trust compared to password-authenticated key exchange. However, biometric data are sensitive personal data that need to be protected on a long-term basis. Furthermore, efficient feature extraction and comparison components resulting in high intra-subject tolerance and inter-subject distinguishability, documented with good biometric performance, need to be applied in order to prevent zero-effort impersonation attacks. In this work, we present a novel protocol for Biometric Resilient Authenticated Key Exchange that fulfils the above requirements of biometric information protection compliant with the international ISO/IEC 24745 standard. In our protocol, we present a novel modification of unlinkable fuzzy vault schemes that allows their connection with oblivious pseudo-random functions to achieve resilient protection against offline attacks crucial for the protection of biometric data. Our protocol is independent of the biometric modality and can be implemented based on the security of discrete logarithms as well as lattices. We provide an open-source implementation of both instantiations of our protocol which achieve real-time efficiency with transaction times of less than one second from the image capture to the completed key exchange

    Colour and texture image analysis in a Local Binary Pattern framework

    Get PDF
    In this Thesis we use colour and Local Binary Pattern based texture analysis for image classification and reconstruction. In complementary work we offer a new texture description called the Sudoku transform, an extension of the Local Binary Pattern. Our new method when used to classify members of benchmark datasets shows a performance increment over traditional methods including the Local Binary Pattern. Finally we consider the invertibility of texture descriptions and show how with our new method - Quadratic Reconstruction - that a highly accurate image can be recovered purely from its textural information

    Recent Advances in Embedded Computing, Intelligence and Applications

    Get PDF
    The latest proliferation of Internet of Things deployments and edge computing combined with artificial intelligence has led to new exciting application scenarios, where embedded digital devices are essential enablers. Moreover, new powerful and efficient devices are appearing to cope with workloads formerly reserved for the cloud, such as deep learning. These devices allow processing close to where data are generated, avoiding bottlenecks due to communication limitations. The efficient integration of hardware, software and artificial intelligence capabilities deployed in real sensing contexts empowers the edge intelligence paradigm, which will ultimately contribute to the fostering of the offloading processing functionalities to the edge. In this Special Issue, researchers have contributed nine peer-reviewed papers covering a wide range of topics in the area of edge intelligence. Among them are hardware-accelerated implementations of deep neural networks, IoT platforms for extreme edge computing, neuro-evolvable and neuromorphic machine learning, and embedded recommender systems

    Understanding egocentric human actions with temporal decision forests

    Get PDF
    Understanding human actions is a fundamental task in computer vision with a wide range of applications including pervasive health-care, robotics and game control. This thesis focuses on the problem of egocentric action recognition from RGB-D data, wherein the world is viewed through the eyes of the actor whose hands describe the actions. The main contributions of this work are its findings regarding egocentric actions as described by hands in two application scenarios and a proposal of a new technique that is based on temporal decision forests. The thesis first introduces a novel framework to recognise fingertip writing in mid-air in the context of human-computer interaction. This framework detects whether the user is writing and tracks the fingertip over time to generate spatio-temporal trajectories that are recognised by using a Hough forest variant that encourages temporal consistency in prediction. A problem with using such forest approach for action recognition is that the learning of temporal dynamics is limited to hand-crafted temporal features and temporal regression, which may break the temporal continuity and lead to inconsistent predictions. To overcome this limitation, the thesis proposes transition forests. Besides any temporal information that is encoded in the feature space, the forest automatically learns the temporal dynamics during training, and it is exploited in inference in an online and efficient manner achieving state-of-the-art results. The last contribution of this thesis is its introduction of the first RGB-D benchmark to allow for the study of egocentric hand-object actions with both hand and object pose annotations. This study conducts an extensive evaluation of different baselines, state-of-the art approaches and temporal decision forest models using colour, depth and hand pose features. Furthermore, it extends the transition forest model to incorporate data from different modalities and demonstrates the benefit of using hand pose features to recognise egocentric human actions. The thesis concludes by discussing and analysing the contributions and proposing a few ideas for future work.Open Acces

    Discriminative preprocessing of speech : towards improving biometric authentication

    Get PDF
    Im Rahmen des "SecurePhone-Projektes" wurde ein multimodales System zur Benutzerauthentifizierung entwickelt, das auf ein PDA implementiert wurde. Bei der vollzogenen Erweiterung dieses Systems wurde der Möglichkeit nachgegangen, die Benutzerauthentifizierung durch eine auf biometrischen Parametern (E.: "feature enhancement") basierende Unterscheidung zwischen Sprechern sowie durch eine Kombination mehrerer Parameter zu verbessern. In der vorliegenden Dissertation wird ein allgemeines Bezugssystem zur Verbesserung der Parameter präsentiert, das ein mehrschichtiges neuronales Netz (E.: "MLP: multilayer perceptron") benutzt, um zu einer optimalen Sprecherdiskrimination zu gelangen. In einem ersten Schritt wird beim Trainieren des MLPs eine Teilmenge der Sprecher (Sprecherbasis) berücksichtigt, um die zugrundeliegenden Charakteristika des vorhandenen akustischen Parameterraums darzustellen. Am Ende eines zweiten Schrittes steht die Erkenntnis, dass die Größe der verwendeten Sprecherbasis die Leistungsfähigkeit eines Sprechererkennungssystems entscheidend beeinflussen kann. Ein dritter Schritt führt zur Feststellung, dass sich die Selektion der Sprecherbasis ebenfalls auf die Leistungsfähigkeit des Systems auswirken kann. Aufgrund dieser Beobachtung wird eine automatische Selektionsmethode für die Sprecher auf der Basis des maximalen Durchschnittswertes der Zwischenklassenvariation (between-class variance) vorgeschlagen. Unter Rückgriff auf verschiedene sprachliche Produktionssituationen (Sprachproduktion mit und ohne Hintergrundgeräusche; Sprachproduktion beim Telefonieren) wird gezeigt, dass diese Methode die Leistungsfähigkeit des Erkennungssystems verbessern kann. Auf der Grundlage dieser Ergebnisse wird erwartet, dass sich die hier für die Sprechererkennung verwendete Methode auch für andere biometrische Modalitäten als sinnvoll erweist. Zusätzlich wird in der vorliegenden Dissertation eine alternative Parameterrepräsentation vorgeschlagen, die aus der sog. "Sprecher-Stimme-Signatur" (E.: "SVS: speaker voice signature") abgeleitet wird. Die SVS besteht aus Trajektorien in einem Kohonennetz (E.: "SOM: self-organising map"), das den akustischen Raum repräsentiert. Als weiteres Ergebnis der Arbeit erweist sich diese Parameterrepräsentation als Ergänzung zu dem zugrundeliegenden Parameterset. Deshalb liegt eine Kombination beider Parametersets im Sinne einer Verbesserung der Leistungsfähigkeit des Erkennungssystems nahe. Am Ende der Arbeit sind schließlich einige potentielle Erweiterungsmöglichkeiten zu den vorgestellten Methoden zu finden. Schlüsselwörter: Feature Enhancement, MLP, SOM, Sprecher-Basis-Selektion, SprechererkennungIn the context of the SecurePhone project, a multimodal user authentication system was developed for implementation on a PDA. Extending this system, we investigate biometric feature enhancement and multi-feature fusion with the aim of improving user authentication accuracy. In this dissertation, a general framework for feature enhancement is proposed which uses a multilayer perceptron (MLP) to achieve optimal speaker discrimination. First, to train this MLP a subset of speakers (speaker basis) is used to represent the underlying characteristics of the given acoustic feature space. Second, the size of the speaker basis is found to be among the crucial factors affecting the performance of a speaker recognition system. Third, it is found that the selection of the speaker basis can also influence system performance. Based on this observation, an automatic speaker selection approach is proposed on the basis of the maximal average between-class variance. Tests in a variety of conditions, including clean and noisy as well as telephone speech, show that this approach can improve the performance of speaker recognition systems. This approach, which is applied here to feature enhancement for speaker recognition, can be expected to also be effective with other biometric modalities besides speech. Further, an alternative feature representation is proposed in this dissertation, which is derived from what we call speaker voice signatures (SVS). These are trajectories in a Kohonen self organising map (SOM) which has been trained to represent the acoustic space. This feature representation is found to be somewhat complementary to the baseline feature set, suggesting that they can be fused to achieve improved performance in speaker recognition. Finally, this dissertation finishes with a number of potential extensions of the proposed approaches. Keywords: feature enhancement, MLP, SOM, speaker basis selection, speaker recognition, biometric, authentication, verificatio

    Biometric Systems

    Get PDF
    Biometric authentication has been widely used for access control and security systems over the past few years. The purpose of this book is to provide the readers with life cycle of different biometric authentication systems from their design and development to qualification and final application. The major systems discussed in this book include fingerprint identification, face recognition, iris segmentation and classification, signature verification and other miscellaneous systems which describe management policies of biometrics, reliability measures, pressure based typing and signature verification, bio-chemical systems and behavioral characteristics. In summary, this book provides the students and the researchers with different approaches to develop biometric authentication systems and at the same time includes state-of-the-art approaches in their design and development. The approaches have been thoroughly tested on standard databases and in real world applications

    Pattern Recognition

    Get PDF
    A wealth of advanced pattern recognition algorithms are emerging from the interdiscipline between technologies of effective visual features and the human-brain cognition process. Effective visual features are made possible through the rapid developments in appropriate sensor equipments, novel filter designs, and viable information processing architectures. While the understanding of human-brain cognition process broadens the way in which the computer can perform pattern recognition tasks. The present book is intended to collect representative researches around the globe focusing on low-level vision, filter design, features and image descriptors, data mining and analysis, and biologically inspired algorithms. The 27 chapters coved in this book disclose recent advances and new ideas in promoting the techniques, technology and applications of pattern recognition

    AutoGraff: towards a computational understanding of graffiti writing and related art forms.

    Get PDF
    The aim of this thesis is to develop a system that generates letters and pictures with a style that is immediately recognizable as graffiti art or calligraphy. The proposed system can be used similarly to, and in tight integration with, conventional computer-aided geometric design tools and can be used to generate synthetic graffiti content for urban environments in games and in movies, and to guide robotic or fabrication systems that can materialise the output of the system with physical drawing media. The thesis is divided into two main parts. The first part describes a set of stroke primitives, building blocks that can be combined to generate different designs that resemble graffiti or calligraphy. These primitives mimic the process typically used to design graffiti letters and exploit well known principles of motor control to model the way in which an artist moves when incrementally tracing stylised letter forms. The second part demonstrates how these stroke primitives can be automatically recovered from input geometry defined in vector form, such as the digitised traces of writing made by a user, or the glyph outlines in a font. This procedure converts the input geometry into a seed that can be transformed into a variety of calligraphic and graffiti stylisations, which depend on parametric variations of the strokes
    corecore